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What is the proper mix between 
processing and analyzing 
image information at the 
edge versus in the cloud? 

Embedded vision is typically defined as image capture and 

processing—and often involves analysis with intelligent vision 

algorithms—running on the same piece of hardware on the so-

called edge, or where the action is happening. 

Some applications may divvy up the 
processing between an edge device and a local 
area network or the cloud. Another option 
is to send only important results—such as 
products that fail inspection—to the cloud for 
archival storage. 

In this collection of articles, we explore the 
types of machine vision applications suited to an embedded, 
or edge computing, approach; the role of FPGAs in embedded 
applications; sensor requirements; and how to deploy edge 
learning, or AI-enabled applications running at the edge.

Whether you work at an OEM, system integrator or end-user 
organization, we’ve provided insights here to help fuel your 
next project. 

    Linda Wilson, 
EDITOR IN CHIEF 
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Vision Processing: At the Edge 
or in the Cloud? “BLERP.”
PHIL LAPSLEY

It can be a tricky question, one with multiple 

answers—some right, some wrong! And, it’s often 

challenging to think through. At the Edge AI and 

Vision Alliance, we use the funny acronym BLERP 

(bandwidth, latency, economics, reliability, and 

privacy) to help decide where processing should take 

place. Following are five of the most important factors 

to consider when making edge-cloud tradeoffs.

Bandwidth
Obviously, vision processing in the cloud requires a 

network connection over which to send your images. 

Depending on your application, your bandwidth 

requirements could be a trickle (say you’re sending one 

small image of a dumpster to determine whether it’s 

full or not) or a flood (say you’re monitoring hundreds 

or even thousands of cameras in real time at a grocery 

store). Whether you can get a network connection that 

will accommodate your requirements is another story. In 

some cases, you may not have the option for an Internet 

connection at all (e.g., a wildlife camera out in the middle 

of nowhere), and in others, you might have a reasonably 

reliable, low-cost pipe to the cloud (think of a consumer’s 

WiFi-connected doorbell). Balancing your requirements 
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and available network capacity is critical. Edge systems 

excel when bandwidth needs are high or available 

bandwidth is low (or non-existent).

Latency
Some applications require instant answers. Think about 

self-driving cars, for example. If your cloud-based image 

processing system takes several seconds to recognize 

an object, you might have already run over a pedestrian 

and be halfway down the block by the time you realize 

you should have stopped. But other systems can tolerate 

much longer latency. A camera based system to recognize 

what food items you have in a refrigerator, for example, 

might be happy taking tens of seconds, or even minutes, 

to realize you’ve put a carton of milk in the fridge. The 

lower your latency requirements, the more pressure to do 

your processing at the edge.

Economics
The best things in life may be free, but, sadly, bandwidth 

and computing aren’t among them. If you’ve ever paid 

for cloud computing, you know how quickly those costs 

can add up. Similarly, just look at your cable or cell phone 

bill to get an idea of how expensive bandwidth can be. 

Edge processing can save you money in bandwidth 

charges (the more you do on device, the less you do in 

the cloud), but adding a more capable processor to your 

product costs money. For many products, a key business 

insight is understanding who is paying for compute 

and bandwidth, what their willingness to pay is, and 

whether they’re already paying for them in some form. 

For example, if you’re making a consumer appliance 

that uses a homeowner’s existing Internet, well, they’re 

already paying for that network connection; from your 

perspective, bandwidth is free. Conversely, if your 

customer is willing to pay for a more capable device (or 

better still already has such a device, like maybe a high-

end mobile phone), that can save you money by reducing 

your cloud computing costs by offloading processing 

to the edge.

Reliability
Is it important that your system continue to function if 

there’s a network outage? A facial-recognition-based 

home door lock, for example, probably needs local 

processing (at least as a fallback!) if the homeowner’s 

WiFi network goes down. In general, the more critical 

reliability is, the greater the need for edge processing.

Privacy
To paraphrase the Vegas slogan, “What happens at the 

edge stays at the edge.” Stated differently: If you’re not 

sending images or video up to the cloud for processing, 

there’s nothing in the cloud for the bad guys to steal, 

nor for you to accidentally leak via a misconfigured AWS 

S3 bucket. Not only does this reduce your liability, it’s 

also a great selling point for your customers that care 

about privacy.

Where you do your vision processing is a balancing 

act and depends on a variety of factors: bandwidth, 

latency, economics, reliability, and privacy chief 

among them. Thinking through how these five factors 

relate to your application can help determine whether 

processing should take place at the edge, in the cloud, 

or some combination of the two. The ultimate answer 

depends on the specific requirements and constraints 

of your particular application, of course, but we hope 

that a BLERP analysis can help you reach an answer 

that’s right for you.

Phil Lapsley is a co-founder of embedded-AI consulting firm 
BDTI and a vice president of the Edge AI and Vision Alliance, a 
100+ member industry association dedicated to inspiring and 
empowering innovators to create systems that perceive and 
understand. He is also an organizer of the Embedded Vision 
Summit, an annual event. 
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How FPGAs Are Used in Embedded 
Vision Applications
Offering a combination of low power, advanced 
computation, and security, FPGAs suit applications 
ranging from artificial intelligence to drones.

APURVA PERI

With the emergence of high-resolution, 

bandwidth-hungry surveillance equipment, 

artificial intelligence integration, real-time 

analytics, and the rapid rise in Internet of Things 

(IoT) adoption, there’s been increased focus on edge 

computing for video data processing workloads. While 

edge computing offers 

such benefits as improved 

response time, optimized 

bandwidth budgets, and 

data privacy, it also poses 

complex challenges such as 

data and design security, 

and restricted power and 

footprint budgets. These 

constraints demand the 

need for specialized 

computing hardware with 

advanced security features.

Mid-range field 

programmable gate arrays (FPGA) can be defined as 

those with a logic density count in the range of 100 to 

500 K as compared to higher density FPGAs with logic 

densities ranging from 1 to 9 M. High-range FPGAs are 

popularly used in applications such as advanced driver 

assistance systems and data centers, while mid-range 

FPGAs deploy into a variety of embedded applications 

such as surveillance, gateway devices, small cell 

wireless applications, medical and industrial imaging, 

and unmanned aerial vehicle (UAV) monitoring.

The Roles of FGPAs in Technology Evolution
Edge computing is distributed computing that, compared 

to centralized computing, can improve response time 

and conserve bandwidth by bringing computation and 

data storage closer to the application. With the ever-

burgeoning IoT, an increasing number of commercial 

and industrial applications rely on the connected web 

of sensor-based, digital, and mechanical machines to 

monitor and control tasks. Wireless-enabled embedded 

systems, real-time analytics, and machine learning 

inference sit at the core of IoT.

A centralized storage and computation model does not 

offer an optimal approach for such applications, since 

it involves transmitting data to a central cloud server 

for processing and back to the devices for actuation. 

Edge computing addresses this by making compute 

FIGURE 1: Edge computing optimizes response times and saves bandwidth.
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resources available close to the data 

sources (Figure 1).

Edge computing demands 

accelerated computational 

performance with accurate and 

predictable outcomes, along with 

strict power and footprint budgets. 

These limitations become especially 

complex when the applications 

involve embedded vision, since 

they require increased thermal 

headroom, higher resolution with 

multiple 4K/8K channels supported 

by batteries, and often integrate 

artificial intelligence (AI) and 

machine learning capabilities.

Having an efficient edge 

computing system for smart vision 

systems requires flexible hardware 

that can support multiple interfaces for sensors such 

as MIPI and SLVS and transport, including HDMI, 

HDCP, USB, and SDI, with advanced image processing 

capabilities that allow for protocol conversions, 

filtering, and edge and depth detection at less than 

5 W power consumption. Owing to their accelerated 

processing, reconfigurability, and energy efficiency 

at optimal cost, FPGAs present an affordable and 

powerful platform suitable for meeting edge computing 

requirements for embedded vision systems.

Compute Horsepower and Power Efficiency
Logic elements, an array of digital signal processing (DSP) 

interlocked with memory blocks, comprise the building 

blocks of an FPGA. Intrinsically parallel and well suited 

for specialized tasks that demand extensive parallelism 

during processing, hardware-programmable FPGAs 

accelerate the convolutional neural network (CNN) used 

for object detection and identification and other computer 

vision applications. FPGAs offer larger DSP capabilities 

than most CPUs and obviate the need for using external 

DSP elements, reducing total cost for a given functionality. 

Additionally, by interlinking memory with the core 

computing units in a distributed fashion, FPGAs bring 

processing closer to memory which contributes to 

optimized power utilization.

Edge devices may be deployed in remote locations 

with limited human access, and/or may require an 

uninterrupted power supply for critical applications 

such as aerial vision, medical vision, traffic monitoring, 

and other such automated processes. Even if a solution 

can offer high-performance in a small footprint, it may 

not necessarily be power-efficient.

FPGAs offer up to 30% lower power dissipation in 

vision-based machine learning applications as opposed 

to CPUs that work with a GPU. For a comparable 

throughput, FPGAs enhance thermal stability and 

optimize cooling costs. Devices based on non-volatile 

FIGURE 2: Traditional FPGA 
design flow involves a series 
of complex tasks and can be 
challenging for AI/ML-based 
application developers with-
out FPGA experience.
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Flash/SONOS technology that feature transceivers 

architecturally optimized for mid-bandwidth 

applications inherently provide the necessary 

power efficiency.

Customization and Time to Market 
Flexibility represents a more obvious benefit of deploying 

FPGAs in vision-based machine learning devices for 

three reasons. First, FPGAs integrate numerous diverse 

resources into one chipset such as hard and soft IP cores 

for camera sensor interfaces, control logic, compression 

algorithms, display and network interfaces, and an 

architecture favorable for neural networks. Second, by 

definition, FPGAs can be programmed either in part 

or whole while in the field. For example, if a developer 

were to update a deployed application system to latest 

versions of HDMI, MIPI CSI or even USB, it would be 

easier to do so on an FPGA than a custom built ASIC. It 

empowers one to build future-proof, scalable designs, 

conform to evolving standards, and reconfigure hardware 

for revised specifications.

If a MIPI-based image processing system necessitates 

an upgrade to support additional camera sensor 

interfaces, an FPGA can implement such a change with 

no modification to the system. This affords notable 

cost and time advantages. Furthermore, FPGAs are also 

scalable. If an algorithm or a function gets larger, FPGAs 

can be efficiently daisy-chained to adapt to the code.

Implementation Challenges  
and Requirements 
While FPGAs represent a suitable option for the 

implementation of AI/machine learning-based functions 

at the edge, designing with an FPGA can be daunting 

and poses challenges especially for someone without 

prior FPGA experience.

A typical design flow involves working with one of the 

many available machine learning platforms to source 

tools, libraries, and resources to build a framework for 

a neural network and generate the associated code 

(Figure 2). The code compiles using a custom register 

transfer level (RTL) compiler followed by the traditional 

FIGURE 3. Microchip’s VectorBlox accelerator SDK is part of its smart embedded vision systems initiative and includes video, imaging, and 
machine learning IP plus the tools for accelerating designs that require high performance in low-power, small form-factors
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FPGA design flow of RTL synthesis, netlist generation, 

and place and route. FPGA’s programming model is 

inconsistent with the larger software development 

community. Although a wide range of platforms to 

develop a machine learning framework exist, each 

offers a unique design structure and requires custom 

implementation. There’s also limited availability of 

application-specific evaluation platforms with an 

easy out-of-the-box experience in the FPGA industry. 

Investing in the necessary hardware to validate a 

CNN—particularly when one evaluates multiple 

platforms to determine the optimal option—also 

becomes imperative.

A software developer with no FPGA experience 

must be able to program a trained neural network on 

a hardware-free evaluation and validation platform, 

with access to multiple OS support. Meeting the 

programming challenges on FPGAs tailored around 

machine learning applications requires a unique 

combination of techniques and design flows. Such 

a combination must offer an extensive range of 

interoperable frameworks and abstracts hardware 

programming by allowing developers to code in C/C++ 

and use power-efficient neural networks.

One example of this approach can be seen in the 

software development kit (SDK) that Microchip 

(Chandler, AZ, USA) offers with its PolarFire FPGAs 

(Figure 3). Such kits enable the development of 

low-power, flexible overlay-based neural network 

applications without having to learn an FPGA 

design flow. 

Kits that include a bit-accurate simulator enable 

users to validate the accuracy of the hardware while 

in the software environment. Kits should ideally also 

include neural network IP so that different network 

models can be loaded at run time and should also 

provide the flexibility to port multi-framework and 

multi-network solutions.

Security and reliability considerations must be 

made to ensure authentic, tamper-proof, and safe 

inference, particularly in applications like surveillance 

or drones. Updating the FPGA in real-time provides a 

fundamental advantage because susceptibilities can be 

addressed with new definitions. The FPGA must present 

competitive security features to ensure full design IP 

protection, secure data communications, and anti-

tamper capabilities.

In an embedded vision scenario, deep learning 

inference schemes are typically part of a broader 

system that integrates camera sensor interfaces like 

MIPI and SLVS, an image signal processing unit, and 

transport interfaces like CoaXPress, HDMI, 10GigE 

Vision, SDI, and wireless connectivity. 

An ideally-suited FPGA for such applications should 

be able to seamlessly support and integrate diverse 

protocols and interfaces with minimal developer effort 

as part of a total system solution.

Decentralized edge computing has gained popularity 

to overcome the shortcomings of long latency and bring 

compute resources closer to data sources. For embedded 

vision applications such as auto-piloting vehicles, 

surveillance, and medical imaging, cost-optimized mid-

range FPGAs combine high-performance, design flexibility, 

and energy-efficiency. 

While the complex programming models extend a 

significant challenge to the adoption of FPGAs, there has 

been an extensive effort from FPGA vendors to overcome 

traditional FPGA design flow challenges and bridge the 

gap to enable the creation of low-power FPGA-based 

embedded vision systems.

Apurva Peri is a senior engineer, product marketing, at 
Microchip (Chandler, AZ, USA)
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Powering Embedded Vision 
with Image Sensors
Embedded vision defines systems that include 
a vision setup that controls and processes 
data without an external computer.

MARIE-CHARLOTTE LECLERC 

New imaging applications are booming, from 

collaborative robots in Industry 4.0, to drones 

fighting fires or being used in agriculture, 

to biometric face recognition and point-of-care 

handheld medical devices at home. A key enabler 

in the emergence of these new applications is more 

accessibility for embedded vision. Embedded vision is 

not a new concept—it simply 

defines systems that include 

a vision setup that controls 

and processes data without 

an external computer. It has 

been widely used in industrial 

quality control in the form of 

what are generally referred to 

as “smart cameras.”

A recent change is the 

availability of affordable 

hardware components 

developed for the consumer 

market, which has drastically 

reduced the bill-of-material and their size compared 

with computers. For example, small integrators/OEMs 

can find single-board computers or system-on-modules 

(SoMs), such as the NVIDIA Jetson, in low volume, 

whereas larger OEMS can directly supply image signal 

processors, such as Qualcomm’s Snapdragon. At the 

software level, off-the-shelf libraries have made specific 

vision systems much faster to develop and easier to 

deploy, even in fairly low quantities.

The second change that is fueling the growth of 

embedded vision systems is the emergence of machine 

learning, which enables neural networks in the lab to be 

trained and then uploaded directly into the processor 

so that it can autonomously identify features and take 

decisions in real-time.

Providing solutions adapted to embedded vision 

is critically important to companies in the imaging 

industry that wish to target these high-growth 

applications. Image sensors, which directly affect the 

performance and design of embedded vision systems, 

play a major role for larger adoption and its key drivers 

can be summarized by the SWaP-C acronym: decreasing 

Size, Weight, Power and Cost. A strong accelerator 

for new uses of embedded vision is to meet market-

acceptable price points, which comes with a strong 

constraint on the vision system cost.

FIGURE 1. An image sensor platform can be designed to provide pin-to-pin compatibility (on the 
left) or footprint compatibility (on the right), enabling a unique PCB layout design. (Images courtesy 
of Teledyne e2v.)
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Optics Cost Savings
The first way to cut vision system costs is to reduce 

footprint for two reasons:

• As the image sensor pixel size decreases, the intrinsic 

silicon cost shrinks because more chips can fit on the 

same wafer.

• The sensor can fit in smaller and lower-cost optics.

For image sensor manufacturers, this reduced optical 

cost has another impact on the design. As a general 

rule, the lower the optics cost, the less optimal the 

angle of incidence on the sensor is. Therefore, low-cost 

optics require the design of specific shifted microlenses 

positioned on top of the pixels so that they compensate for 

the distortions and focus light coming from wide angles.

Cost-Effective Interfaces
Aside from optical optimization, the interface also 

indirectly impacts vision system costs. The MIPI CSI-

2 interface is the most suitable candidate to enable 

interface-induced cost savings as it was originally 

developed for the mobile industry by the MIPI Alliance. 

It has been broadly adopted by most ISPs, and the 

industrial markets have begun to adopt it as it offers a 

lean integration in the cost-effective system-on-chip (SoC) 

or SoM from NXP, NVIDIA, Qualcomm, Rockchip, Intel, 

and others. Designing a CMOS image sensor or imaging 

module with a MIPI CSI-2 interface provides a direct data 

transfer from the image sensor to the embedded system’s 

host SoC or SoM without any intermediate converter 

bridge, saving cost and PCB surface, and that advantage 

is even stronger in embedded systems based on multiple 

sensors for 360° vision.

These benefits come with some constraints. The 

MIPI CSI-2 D-PHY standard, today widely used in the 

machine vision industry, relies on highly cost-effective 

flat cables with the drawback of a connection distance 

limited to 20 cm, which may not be optimal in remote 

head setups where the sensor is located farther from 

the host processor. This is often the case in traffic 

monitoring or surround-view applications. One solution 

for longer connection distance is placing additional 

repeater boards between the MIPI sensor board and 

the host processor—at the expense of miniaturization. 

Other solutions exist, coming not from the mobile 

industry but from the automotive industry: the FPD-

Link III and MIPI CSI-2 A-PHY standards supporting 

coax or differential pair cables allow connection 

distances up to 15 m.

Reducing Development Costs
Rising development costs often present a challenge when 

investing in a new product. It can cost millions of dollars 

in non-recurring expenses (NREs) and create pressure on 

the time to market. For embedded vision, this pressure 

becomes even greater as modularity (which is defined 

by the ability to switch image sensors), is an important 

FIGURE 2. New modules (on the right) allow direct connection to off-the-shelf processing boards (on the left) through flat cables without the 
need to design any additional boards.
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value for integrators. Fortunately, the NREs can be 

limited by offering certain degrees of cross compatibility 

between sensors, for example; by defining families of 

components sharing the same pixel architecture to have 

steady electro-optical performances; by having common 

optical centers to share a single front mechanics; and 

a compatible PCB assembly, 

by means of footprint or pin-

to-pin compatibility, to hasten 

evaluation, integration, and supply 

chain as illustrated in Figure 1.

Nowadays, developing 

embedded vision systems has 

become even faster and more 

affordable with the broad release 

of so-called modules and board-

level solutions. These turnkey 

products usually consist of a 

ready-to-integrate sensor board 

that sometimes also includes a preprocessing chip, 

a mechanical front face, and/or a lens mount. These 

solutions benefit applications through their highly 

optimized footprint and standardized connectors, which 

enable direct connection to off-the-shelf processing 

boards such as NVIDIA Jetson or NXP i.MX units without 

the need to design or manufacture intermediate adapter 

boards. These modules or board-level solutions not only 

ease and hasten hardware developments by removing 

the need for PCB design and manufacturing, but also 

drastically shorten software developments, as they are 

provided along with their Video4Linux drivers most of 

the time. OEMs and vision system makers can therefore 

skip weeks of development in making the image sensor 

communicate with the host processor to instead focus on 

their differentiating software and overall system design. 

Optical modules can push that turnkey aspect one step 

further by also integrating the lenses inside the modules, 

providing a full package from the optics to the driver 

through to the sensor board and eliminating tasks related 

to lens assembly and testing.

Energy Efficiency for Enhanced Autonomy
Miniature battery-powered devices are the most obvious 

applications benefiting from embedded vision, as external 

computers prevent any portable applications. To decrease 

the systems’ energy consumption, image sensors now 

include a multitude of features that allow system designers 

to save power.

From the sensor standpoint, there are multiple ways 

to decrease power consumption in an embedded vision 

system without decreasing the acquisition frame rate. 

The simplest way is at system level by minimizing the 

dynamic operation of the sensor by using (as much 

as possible) the sensor’s standby and idle modes to 

reduce the sensor’s power consumption. Standby 

mode switches off the sensor’s analog circuit, reducing 

sensor’s power consumption to a small percentage of 

the functional mode. The idle mode saves around half 

of the power consumption and can prepare the sensor 

to acquire images in microseconds.

Another way to save power is to design a sensor using 

more advanced lithography nodes. The smaller the 

technology node, the lower the voltage necessary to 

FIGURE 3. Automatic barcode location with the Teledyne e2v Snappy5M sensor.
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switch the transistors and lowering the dynamic power 

consumption as it is proportional to voltage square: 

Pdynamic ∝ C × V2. Therefore, pixels that were using 180-

nm technology 10 years ago have shrunk by reducing 

the transistors to 110 nm and also decreased the 

voltages of the digital circuit from 1.8 to 1.2 V. In the 

next generation of sensors, the 65-nm technology node 

will be used to provide even more power savings for 

embedded vision applications.

Lastly, an image sensor can be appropriately chosen 

to reduce the energy consumption of the LEDs in 

certain conditions. Some embedded systems rely on 

active illumination, for example, to generate a 3D map, 

to freeze motion, or to simply increase the contrast 

by using sequentially pulsing specific wavelengths. 

In these cases, the image sensor can generate power 

savings by lowering the noise of the sensor when 

operating in light-starved situations. By lowering the 

sensor noise, engineers can decide either to reduce 

the current intensity or the number of LEDs integrated 

in the embedded vision system. In other conditions, 

where image capture and LED flash are triggered by an 

external event, choosing the appropriate sensor readout 

architecture can lead to significant power savings. 

Whereas conventional rolling shutter sensors require 

LEDs to be turned ON during the whole exposure of the 

frame, global shutter sensors allow it to turn ON the light 

for only a portion of frames. Switching from rolling to 

global shutter image sensors, therefore, induces lighting 

costs savings while still maintaining the noise as low 

as the CCD sensors used in microscopy if using in-pixel 

correlated double sampling.

On-Chip Functionalities Pave the Way for 
Application-Designed Vision Systems
An extreme extension of this embedded vision concept 

would lead us to a full customization of the image 

sensor integrating all the processing functions (SoC) 

in a 3D stacked fashion to optimize performance and 

power consumption. However, the cost of developing 

such a product would be tremendously high. While it 

is a custom sensor, it is not totally impossible to reach 

that level of integration in the long term. Today we 

are at an intermediary step, consisting of embedding 

specific functions directly into the sensor to reduce 

computational load and speed processing time.

For example, in barcode reading applications, 

Teledyne e2v has patented an embedded feature 

FIGURE 4: Typical evolution of image sensor footprint with package and pixel technology improvements since 2016.
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directly on the sensor chip that contains a specific 

barcode identification algorithm to locate the position 

of the barcodes in each frame, so the ISP can focus on 

the these regions to process data more efficiently.

These functionalities are often specific and require 

a good understanding of a customer’s application. As 

long as the application is sufficiently understood, other 

on-chip functionalities can be designed to optimize the 

embedded vision system.

Reducing the Weight and Footprint 
to Fit in the Smallest Spaces
A major requirement for embedded vision systems is 

to fit in small spaces or to be lightweight to fit within 

handheld devices and/or maximize 

battery-powered engines. That’s 

why today most embedded vision 

systems use small optical format 

sensors with a limited resolution 

from 1 to 5 MPixels.

Reducing the dimensions of the 

pixel array is only the first way to 

reduce the footprint and weight 

of the image sensor. Today, the 

65-nm process enables us to 

decrease the global shutter pixel pitch down to 2.5 µm 

without damaging electro-optical performance. Such 

manufacturing processes lead to products such as a full 

HD global shutter CMOS image sensor in the same format 

as in the mobile phone market, i.e. less than 1/3 in.

Another key technology for reducing sensor weight 

and footprint is to reduce dimensions of the package. 

Wafer-level packages have experienced fast growth 

in the market for a few years, especially for mobile, 

automotive, and medical applications. Compared with 

the classical Ceramic Land Grid Array (CLGA) packages 

used in the industrial market, the wafer-level fan-out 

packages and chip scale packages provide higher density 

connections, an excellent solution to the challenge of 

producing miniature and lightweight image sensors for 

embedded systems. 

Looking to the future, we can expect another 

technology to bring further reductions in the size of 

sensors for embedded vision.

3D stacking is an innovative technique to make 

semiconductor components by manufacturing the 

different circuit blocks on separate wafers, and 

then stacking and interconnecting them with Cu-Cu 

connections and Through Silicon Vias (TSV). 3D 

stacking allows devices to be made with smaller 

footprints than conventional sensors because of layer 

overlap. In 3D stacked image sensors, the readout and 

processing blocks can be moved below the pixel array 

and row decoder. The footprint therefore decreases 

by the surface of the readout and processing blocks, 

while also bringing the possibility of adding extra 

processing power in the sensor to unload the image 

signal processor.

However, 3D stacking currently faces some challenges 

in order to be widely adopted on the image sensor 

market. First, this is an emerging technology; second, 

it’s higher cost because of the additional process steps 

required that increase the silicon cost by more than 

three times compared with conventional technology 

wafers. Therefore, 3D stacking will be an option mostly 

FIGURE 5: 3D chip stacking technology enables overlapping a pixel array, analog and digi-
tal circuit, and even adding extra layers of application-specific processing while reducing 
sensor footprint.
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for high-performance or very small footprint embedded 

vision systems.

Embedded vision can be summarized as doing “lean” 

vision and can be applied by a number of companies 

including OEMs, system integrators, and standard 

camera manufacturers. “Embedded” is a generic term 

that is used in many applications, which makes it 

difficult to set a single list of specifications. However, 

several rules apply to optimize embedded vision 

systems, as the driving markets are generally not driven 

by state-of-the-art speed or sensitivity but rather by 

size, weight, power, and cost. The image sensor is a 

significant contributor to these parameters, and care 

is needed in the choice of the image sensor that will 

optimize overall embedded vision system performance. 

The right image sensors will offer more freedom for an 

embedded vision designer to reduce not only the bill 

of material but also the footprint of both illumination 

and optics. But even more than image sensors, the 

emergence of turnkey board-level solutions under the 

form of imaging modules paves the way toward further 

optimization of size, weight, power, and cost and a 

significant decrease of development cost and time, 

delivering affordable and deep learning-optimized 

image signal processors from the consumer market, 

without adding complexity. 

Marie-Charlotte Leclerc is a product manager, Teledyne e2v 
(Milpitas, CA, USA)



Deep Learning

Training Set Results

WWW.VISION-SYSTEMS.COM   |   15

How to Accelerate AI Deployment 
in Machine Vision Applications
Machine learning at the edge addresses 
applications too complex for rule-based 
vision but too simple to warrant investment 
in a full deep learning solution.

RETO WYSS

Traditional machine vision relies on analytical, 

rule-based algorithms to detect and 

parameterize defects that can be mathematically 

defined. In such applications, highly skilled systems 

developers and engineers evaluate each problem, 

apply a series of rules that can accomplish the task, and 

then program the system. To streamline the process, 

many vendors offer low-code and no-code solutions 

that help ease the process of tuning a set of analytical 

pattern matching, blob, edge, caliper, or other machine 

vision tools to meet application requirements. Despite 

these advances, rule-based solutions reach their limit 

when defects are difficult to define numerically or their 

appearance varies significantly.

As a result, ongoing development and maintenance 

of rule-based machine vision algorithms remains a 

challenge. It’s often required due to part and process 

changes. Part changes can be caused by shrinking 

product lifecycles or component obsolescence, 

for example. Process changes may be required 

due to raw material or component variations from 

different suppliers, keeping up with technological 

advancements, or lighting changes in the production 

environment. This level of machine vision system 

maintenance relies on hard-to-find and expensive 

engineers with machine vision experience and skills.

Enter Deep Learning
A decade ago, deep learning was available only to 

specialized professionals with big budgets. However, 

advancements in theory, computer hardware such 

as GPUs, and data availability have recently led to its 

emergence in industrial machine vision applications. 

Deep learning excels in two areas: situations where 

FIGURE 1. Deep learning is designed to automate complex and highly customized applications by processing large, detailed image sets, 
allowing users to quickly and efficiently distinguish between acceptable and unacceptable anomalies and deliver accurate results. Photo 

Credits Cognex Corporation
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subjective decisions need to be made, such as those 

requiring human inspectors, and confusing scenes where 

identifying specific features in the image is difficult due 

to high complexity or extreme variability. Scenes with 

significant background noise—for example, leather 

products with texture—are a good fit for deep learning.

In contrast to rule-based machine vision, which 

relies on experts to develop new algorithms, deep 

learning relies on operators, line managers, and other 

subject matter experts to label images as good or 

bad and classify the types of defects present in an 

image. This approach eliminates the need for highly 

skilled machine vision specialists and reduces the 

size of the engineering crew required to deploy and 

maintain machine vision solutions. When something 

changes, anyone who knows what the defect 

looks like can retrain the model by recording and 

labeling new images.

Deep Learning Challenges
Deep learning toolkits enable people to deploy learning-

based machine vision systems more easily, but obstacles 

remain. For example, most successful deep learning 

projects still require large budgets and specialized 

expertise from vision engineers and data scientists to 

initially set up the system. However, not all projects will 

deliver sufficient value to the operation that would justify 

a significant investment, limiting the ability of deep 

learning to meet requirements in such applications.

As with any machine vision application, image 

acquisition hardware plays a critical role in the success 

of a deep learning solution. A well-designed imaging 

system is required to perform image acquisition and 

collection. Reliable and repeatable imaging techniques 

must be able to clearly distinguish features or objects 

of interest.

Part presentation, illumination techniques, and 

image resolution play an important role in identifying 

the subtleties differentiating various classifications. 

And processing used for image analysis must be robust 

and powerful enough to handle typical production rates 

and algorithmic demands.

On the software side, model development can 

take a long time and require tagging of hundreds or 

thousands of images. Furthermore, obtaining images of 

defects can be challenging, particularly for prototype 

production lines that run small numbers of parts, as 

well as for consumer electronics and mobile devices 

that have very short production runs lasting a year 

or less. Such situations require frequent iteration. 

Moreover, highly automated production lines typically 

produce good parts with few defects. Consequently, it 

FIGURE 2. To ensure that edge learning networks can function 
efficiently on embedded machine vision systems, the images are 
resized or modified so that only the relevant regions of interest 
are examined.
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may take several months of running the line to obtain 

a sample size large enough to generate a reliable model.

Edge Learning Minds the Gap
Considering all these challenges, many machine vision 

applications are too complex for a rule-based solution. 

Still, they don’t warrant the time and resources required 

to develop a full-blown deep learning solution. To 

address this gap in machine vision application coverage 

between traditional rule-based 

and full deep learning solutions, 

hardware manufacturers have 

developed edge AI that runs 

on their embedded smart 

camera platforms.

Dubbed “edge learning,” this 

type of deep learning utilizes 

a collection of preexisting 

algorithms that facilitate 

model training and subsequent 

image analysis directly on 

the device. Edge learning is a 

machine learning approach 

specifically tailored for industrial 

automation. It is trained in two steps: pretraining and 

specific use case training.

The first step is done by the edge learning supplier on 

a large dataset optimized for industrial automation. The 

pretrained tool is then embedded in a smart camera and 

shipped to the customer, who completes the second part 

of the training for their specific use case. This approach 

allows for faster training, requiring only a few images, 

and does not require a computer or GPU.

Image setup and acquisition also take less time 

because smart camera platforms combine multiple 

elements, such as sensor, optics, processor, and 

sometimes even illumination. This approach reduces 

hardware integration problems such as cabling to a 

PC and incorporating the inference engine, which can 

be time-consuming and increase the complexity of a 

machine learning system.

Edge Learning Benefits
Edge learning offers several benefits. It’s much less 

costly to deploy than rule-based machine vision and 

deep learning solutions. It requires fewer images and 

takes less time to train and compute. It allows for 

faster production ramp-ups and product changeovers 

because training and production occur in the same 

place, on the same device.

It should be noted, however, that the many benefits 

these edge learning-embedded smart cameras offer 

come at a cost. As a result, edge learning is not suitable 

for the most complex problems, but it can address a 

large portion of applications right out of the box.

Shorter Optimization Loop
Compared to deep learning, edge learning has a much 

shorter optimization loop and eliminates the need 

to send images to another device for labeling and 

retraining. Additionally, it optimizes workforce utilization 

FIGURE 3.  Edge learning fills the application gap between traditional rules-based machine 
vision and full deep learning solutions.
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and reduces the long-term maintenance required for 

collecting and managing data.

Furthermore, edge learning is a viable option for 

automation as it doesn’t require any prior knowledge 

of machine vision.Instead of relying on experts, edge 

learning allows operators and line engineers to label 

images for retraining of the system when part or 

process changes arise.

By enabling beginners and experts to quickly 

automate inspection tasks, edge learning benefits 

original equipment manufacturers (OEMs), machine 

builders, and end users alike.

Using edge learning, OEMs can more easily tackle 

challenging machine vision problems and empower 

their end-user customers. Edge learning enables end 

users to quickly address issues and add new products 

quickly, which minimizes the need to go back to the 

OEM and reduces the financial impact of after-sales 

support and service costs.

Meanwhile, system integrators can use edge learning 

to increase revenue by performing more feasibility 

studies in less time. Edge learning allows system 

integrators to reduce time spent on tasks such as image 

acquisition setup and machine vision tools selection 

so that they can quickly determine the feasibility of an 

application and win more business faster, while taking 

on more projects.

End-users can benefit from edge learning by 

automating many manual optical inspections or 

automation tasks that don’t justify the investment of 

developing a sophisticated machine vision or deep 

learning system. Edge learning helps manufacturers 

more easily deal with part and process changes as they 

arise and iterate without developing new algorithms for 

each new generation of product.

Edge learning also can simplify existing rule-

based machine vision applications and reduce 

costs associated with expensive image acquisition 

components, such as telecentric optics, illumination, 

or part handling systems. By simplifying or eliminating 

these costly components, a lower cost setup can often 

be achieved, with savings on image formation, fixturing, 

or complex image processing requirements.

Summary
Edge learning on embedded smart camera platforms 

offers a unique solution for many applications that are 

too challenging for conventional rule-based machine 

vision yet don’t warrant the expense of investing in a full 

deep learning solution. Edge learning has proven to be 

more capable than traditional machine vision analytical 

tools in situations where human inspectors need to 

make difficult subjective decisions, for instance when 

identifying specific features in an image is difficult due 

to high complexity or extreme variability.

At the same time, edge learning is more cost-effective 

and user-friendly than traditional deep learning 

solutions, allowing more applications to be addressed 

economically. Edge learning tools can be trained using 

just a few images per class. 

Ultimately, edge learning is another tool in the 

toolbox that can improve workforce utilization 

for OEMs, machine builders, system integrators, 

and end users. 

Reto Wyss is vice president of AI technology at Cognex 
Corporation. (Natick, MA, USA)


