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How to Deploy Deep Learning 
in Machine Vision Applications

In this edition of Vision Insights, Vision Systems Design offers 
practical advice on building and deploying deep learning in 
machine vision systems. 
To do so, we discuss what neural networks are and how they 

work, how to set up and train neural networks, and how to deploy 
them to automate product inspection.

Whether you work at an OEM, system integrator or end-user 
organization, we’ve provided insights here to help fuel your 
next project. 

				    Linda Wilson, 
EDITOR IN CHIEF 
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What is deep learning and how 
do I deploy it in imaging?
A subset of machine learning, deep learning 
offers promising enhancements in accuracy 
and efficiency in machine vision.

PERRY WEST

What is deep learning? Within the area of 

artificial intelligence (AI) exists machine 

learning, and within that, is the area of deep 

learning. Many different types of artificial intelligence 

exist. AI is any technique that imitates, at least in part, 

what a human would do with their mind. It is the 

ability of machines to mimic human behavior, and 

usually integrates perception, prediction, reasoning, 

and decision making, according to Yann LeCun, vice 

president and chief AI scientist at Facebook.

Deep learning (Figure 1) can be thought of as 

“programming with data.” In a virtual machine setup 

with a neural network, the network is initially not 

programmed to do anything. When this virtual machine 

is given images, it begins to program itself to perform 

whatever the task is that is being set up. Deep learning 

can be used in imaging in many ways, including the 

recognition of objects in images, flaw detection, sorting 

and grading products, facial recognition, self-driving 

cars, and denoising images, among others.

Neural networks are modeled after the human 

brain. The brain consists of around 100 billion brain 

cells—neurons. Each neuron has dendrites (inputs), 

a nucleus, and axons (outputs). The connection 

between an axon of one neuron and a dendrite of 

another neuron is a synapse. The synapse contains 

a small gap separating the axon and dendrite, and 

when things are going right, there is dopamine in 

the synapse that strengthens the electrochemical 

connection the two neurons.

Something similar exists in a computer model of the 

neuron (Figure 2), with the nucleus and the dendrites 

(inputs) and the weights associated with each input, 

which represents the synapses—how tightly coupled 

the inputs are to preceding neurons. There are also 

the axons (outputs from the neurons). One important 

aspect of the computer simulation of a neuron is the 

activation function, which introduces non-linearity 

to neural networks. Activation functions include the 

sigmoid, hyperbolic tangent, rectified linear unit 

(ReLU), and leaky ReLU functions.

The simple neural network proposed many years ago 

consists of three layers. The input layer did nothing 

but distribute inputs and had no activation function or 

weights. Then there was the hidden layer in the middle, 

FIGURE 1: Deep learning exists within machine learning, which 
exists within the larger category of artificial intelligence (AI), 
which refers to techniques that imitate what humans would do 
with their mind.
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and the output layer. This was the minimal neural 

network architecture.

To use a neural network in deep learning, it must 

be trained to minimize errors over the training set. 

The training technique is backpropagation. When 

using the network, input data (images or features) 

advance through the neural network to reach the 

outputs. Network training involves starting from the 

output and propagating the error backwards through 

network (backpropagation). Network training uses 

the steepest gradient descent, 

which means using the derivative 

for the activation function and the 

chain rule in Calculus to move the 

errors back through the network 

regardless of the number of layers.

One learning control parameter, 

the learning rate, controls the 

magnitude of the weight adjustment 

based on the area and the steepness 

of the gradient. Starting with a very-

high learning rate and trying to 

make big jumps in learning typically 

results in big weight changes 

causing the network to diverge 

from a solution and perform worse 

instead of better. When using a high learning rate, 

some learning takes place, but typically the network 

doesn’t improve to the point of being useful. Setting 

the learning rate low results in a long training period. 

A learning rate that brings the error down as quickly 

as possible is ideal, but ultimately, developers must 

experiment and configure the system to find the best 

learning rate.

In convolutional neural networks (CNN), an input 

(image), first goes into layers performing convolution 

with the convolution weights set through training. The 

next layers use an activation function, usually followed 

by a pooling layer, where groups of four pixels reduce 

to one, thus reducing the overall size of the image and 

making it easier for the network to extract features. 

Pooling can be 2 x 2 to 1, it can be 3 x 3 to 1, and it can 

be the maximum, the average, or the median, but the 

most common pooling function involves getting one 

pixel from the maximum of four pixels.

In the CNN, an image goes through a number of two-

dimensional convolutional layers and then is flattened 

to create a one-dimensional feature vector from the 

image. The feature vector runs through additional 

network layers to create classification outputs (Figure 

3). The next step involves non-maximum suppression, 

an important post-processing step. If the neural 

network says cat 0.8 and dog 0.3, and the application 

only requires choosing between cat or dog, non-

maximum suppression helps determine that—based 

on the difference in values—a cat is in the image. An 

issue presents itself when the network says cat 0.51 

and dog 0.49. Here, the non-maximum suppression 

algorithm must be strong enough to render such values 

as indeterminate.

FIGURE 2: In a computer model of a neuron, there exists a nucleus, dendrites (inputs), weight 
associated with each input, and axons (outputs from the neurons).
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Deep Learning Techniques 
and Implementation
Techniques for using deep learning in imaging include 

supervised learning, the most common method, where 

a system trains with labeled images and is then tested. If 

the testing results are adequate, the deep learning-based 

system is ready to use. Transfer learning methods involve 

using supervised learning along with a pretrained neural 

network. In this method, retraining is only required on 

the later layers in the network for the new application. 

When it is appropriate, transfer learning is much faster 

than training a network from scratch.

Unsupervised learning, or predictive learning, defines 

classes based on clustering of input data without 

labeling. Reinforcement learning uses a reward—

positive or negative—for each output during training. 

The learning rate is much slower than supervised 

learning and requires much more data. Lastly, 

adversarial training involves the use of two neural 

networks working against each other.

The first step in implementing deep learning into an 

imaging system involves determining the types and 

numbers of layers, the number of inputs (usually the 

number of pixels in the input images), and the number 

of outputs (usually dependent on the number of 

classes required). Inputs, images, outputs, and labels 

for the images then go into a model under training. 

Training compares the network’s outputs to the labels 

to generate an error signal which feeds back into the 

model under training to adjust the weights (coefficients), 

a process repeated until the error over all the training 

images reaches an acceptable minimum value.

When this happens, the network is tested using 

images not used for training to verify the network’s 

outputs have a sufficiently low error. After a successful 

test, this neural network can be exported with the 

trained weights and becomes the model to use. At 

runtime, the model loads into an inference engine—a 

computer running the neural network—where the 

trained network operates.

Deep learning requires an abundance of labeled 

training data. This data will be split up into three 

classes: training data, test data, and validation data. 

Training data is used exclusively for network training, 

with each pass through the training data representing 

an epoch. After each epoch, the network’s performance 

is evaluated using the validation data and the error 

on the validation data is tracked as an indication of 

how well training is progressing. After training—with 

the error on the training data sufficiently low—

the network is tested using the test data to ensure 

acceptable results. Having a separate test set on 

which the network doesn’t train enables developers to 

independently test a trained network—providing the 

only evidence that a network performs reasonably well.

Several methods for speeding up training exist, 

such as initially training with a subset of the training 

data. Such a method helps get adequate weights. 

Another option, transfer learning, involves taking 

a CNN previously trained on a similar problem and 

only training the last few layers of the network for the 

new application. With a similar enough network, the 

features extract the same, removing the need to train 

the convolutional layers—it is only necessary to train 

the last few layers from the feature vector to output.

Fine tuning—another method similar to transfer 

learning to speed up training—involves using a new, 

small set of training images with a trained network. To 

use fine tuning, the output layer of the CNN must be 

replaced, with training performed with a small training 

data set. Pre-trained networks for transfer learning and 

fine tuning exist, including VGG-16, ResNet 50, DeepNet, 

and AlexNet by ImageNet.

Several considerations must be made when 

implementing a deep learning system, including the 

fact that a fast system requires parallel processing. 
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A CPU can perform initial tests but will be very slow 

in training and execution. Useful tools for parallel 

processing include graphics processing units (GPU), 

field-programmable gate arrays (FPGA), and digital 

signal processors (DSP). Chips such as the Apple A12 

bionic chip, which has two CPUs and a GPU, plus some 

additional circuitry specially designed to execute deep 

learning networks, as well as special processing chips 

like the Intel Movidius and Intel Nervana, also provide 

processing capabilities.

Data must also be considered, including data for 

training, validation and testing. More training data 

means better results. Implementing a successful deep 

learning system necessitates a lot of time and effort 

spent on gathering and labeling data.

Major Challenges and Pitfalls to Avoid
One of the major challenges in deep learning involves 

real-time processing of many pixels, which means a lot of 

data, which requires a lot of computational power in both 

training and execution. This necessitates a very large 

set of pre-labeled, training images, but in some cases, 

labeled training datasets can be purchased. Another 

problem exists with the possibility of mislabeling of 

training data. Labeling just one image wrong results in 

degradation in performance of a trained neural network.

Bias in the training data represents another possible 

pitfall. More samples of one class than the other leads 

to difficulty in achieving good results on the classes 

with fewer examples. Data storage is another factor, 

including the image format and image storage options. 

When storing images on disks, it takes a long time for 

retrieval. Solid-state disks become preferable, but if 

there are a million RGB, megapixel 

images, storage requirements 

become enormous.

In using machine learning without 

deep learning, network inputs won’t 

be the images, but features extracted 

from the images. Selected features 

must be normalized in such scenarios. 

With one feature going from 0 to 1 and 

another feature that goes from 0 to 

100, the latter dominates. Normalizing 

scales the features, ensuring that 

they all fall within the same range. 

Otherwise, the network will fail to 

meet performance expectations.

Data augmentation—a method for reducing the cost 

of gathering and labeling the data—improves network 

reliability. Augmenting a picture of a cat by creating 

several other pictures from it with the same label 

represents one example. Further methods include 

rotation, scale, shear, obscuration (e.g. haze), color 

change, flip/mirror, crop, addition of noise, and varying 

the background scene.

Choosing the right network configuration poses 

potential problems. If a network is too complex, 

training time will be longer than necessary and the 

network may not generalize the features that it needs 

to recognize and may perform poorly.

FIGURE 3: In CNNs, convolutional layers are used to perform feature extraction, just as 
convolution operators are used to find features such as edges. In conventional image pro-
cessing, image filters such as Gaussian blurring and median filtering perform this task. CNN 
architectures, on the other hand, emulate the human visual system (HVS) where the retinal 
output performs feature extraction such as edge detection. (Figure courtesy of MIT).
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One option to deal with long training time is renting 

cloud processing time from Microsoft or Amazon for 

deploying deep learning applications, as the cloud 

pulls in many processors and GPUs to get training done 

more quickly. Determining the initial conditions of the 

network also creates a challenge, as does the selection 

of the learning rate and training parameters.

Pragmatic challenges in deep learning exist as well, 

including the input of an image during execution that is 

not representative of any training input (an anomaly). 

Security must also be considered, in terms of what 

would happen when a network fails to give the right 

answer or if someone hacks into the network.

Philosophical challenges must be considered as 

well. CNNs lack creativity or abstract thinking, have no 

intuition, and cannot synthesize input from a specified 

output, unlike people. For example, it is not possible to 

tell a network “I want to recognize a cat, what do I look 

for?” Other questions to consider are: If the network fails, 

who is responsible, and will they be able to explain why?

Supervised learning and reinforcement learning are not 

sufficient for real world problems. Unsupervised learning 

is required, where the network can not only recognize 

the cat and the dog, but also look at a picture of a 

camel and determine that it is not a cat and not a dog.

Several methods for improving efficiency in deep 

learning exist, including experimentation with floating 

point weights and subsequent reduction to integer 

(fixed point) weights, which leads to speed increases 

but a slight decrease in accuracy. Using binary weights 

(0 or 1) also leads to a further increase in speed, but a 

decrease in accuracy.

In a network with lots of branches with weights, 

some of these weights become infinitesimally small. 

Pruning these weights out is possible, with only a small 

decrease in accuracy. Transfer learning can also lead to 

a significant reduction in training time.

Tips for Successful Implementation
Regarding the successful implementation of a deep 

learning system, here are several tips to consider. First, 

watch out for overfitting, which happens when a neural 

network essentially “memorizes” the training data. 

Overfitting results in great performance on training 

data, but the network’s model becomes useless for 

out-of-sample prediction. Larger networks are more 

powerful, but it becomes easier to overfit. A system 

trying to learn a million parameters from 10,000 

examples is not ideal. If parameters are greater than 

examples, this leads to trouble. More data is almost 

always better because it helps fight overfitting.

Validation—and one should never train on the 

validation or test data—really helps when the network 

isn’t behaving right, and validation doesn’t track the 

testing results. When this happens, stop and make 

changes to the network rather than continuing with 

disappointing results.

Furthermore, train over multiple epochs. With 

learning rates of 1/10th or 1/20th, many passes are 

required to get the gradient down to the minimum or 

near the minimum. Lastly, stacking layers can help 

as well. The first layer can be a convolutional layer or 

multiple convolutional layers doing different things.

When approached with great attention to detail 

and an understanding of deep learning architectures, 

functionality, and system requirements, the technology 

offers great enhancements in efficiency and accuracy 

in machine vision processes of all kinds. Additionally, 

breakthroughs should coming in network topology, 

in ways to speed up training, in ways to reduce the 

number of labeled images needed to train, and even in 

new types of networks for learning.

Perry West is the founder and president of Automated Vision 
Systems, Inc. (San Jose, CA, USA).
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Five steps for building and deploying 
a deep learning neural network
Accelerating machine vision implementation 
with deep learning is nothing to fear.

BRIAN CHA

Free tools and training data, easy-to-find tutorials, 

and low hardware costs have made deep 

learning no longer a method available only to 

researchers or people with highly specialized skills 

and/or big budgets.

This presents both opportunities and threats as new 

players emerge to disrupt established names and spur 

innovation. It also provides opportunities for a machine 

vision system to do things previously unimaginable. 

Deep learning can recognize unexpected anomalies, 

typically very difficult or 

almost impossible to achieve 

with traditional rules-based 

coding, for example.

Deep Learning 
Fundamentals
Deep learning, a subset of 

machine learning inspired by 

how the human brain works, 

takes place in two stages: 

training and inference.

The training phase involves defining the number 

of neurons and layers that will comprise the neural 

network and exposing the network to labeled training 

data, usually good images of objects that would pass 

inspection and bad images of objects that would fail.

The neural network then figures out properties of 

each grade, such as size, shape, color, consistency 

of color, and so on. Manual definition of these 

characteristics or programming the parameters of 

a good or bad product are not required. The neural 

network trains itself.

In the inference phase the trained neural network, 

when presented with fresh images, will provide an 

inference as to the quality of the object and the neural 

network’s confidence in its assessment.

Step 1 - Identify The Appropriate 
Deep Learning Function 
Four of the most common deep learning tasks include 

classification, detection and localization, segmentation, 

and anomaly detection.

Classification involves sorting images into different 

classes and then grouping images based on common 

properties, most often into categories of pass and fail. 

Any item classified pass continues down the production 

line. An item classified fail does not.

Detection and localization can identify features in an 

image and draw a bounding box around those features 

FIGURE 1: Advanced driver assistance systems are appropriate for deep learning segmentation rou-
tines that locate and identify objects, for instance pedestrians and other vehicles.
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to determine their position and size. This function can 

provide a more detailed assessment of why an item 

deserves a fail classification, for example, by detailing 

the location of the fault.

Segmentation identifies which pixels in an image 

belong to which corresponding objects, to determine 

the context of an object and its relationship to other 

objects. Advanced driver assistance systems (ADAS) 

use segmentation routines to identify cars, street signs, 

or other objects while the car moves.

Anomaly detection functions can identify regions on 

an image that do not match a pattern. For instance, a 

deep learning system could process an empty shelf in 

a grocery store as an anomaly compared to nearby, full 

shelves, and mark the empty shelf as requiring a restock.

Step 2 - Select a Framework 
A framework, or a toolset used to develop a neural 

network, usually includes a starter neural network and 

tools for training and testing the network. Free, easy to 

use frameworks like PyTorch, TensorFlow, and Caffe2 

provide great documentation and include examples to 

allow novice users to train and deploy neural networks 

with minimum effort.

PyTorch (https://pytorch.org/), an open source 

solution now part of Facebook (Menlo Park, CA, 

USA; www.facebook.com), is simple and easy to use 

and employed in many research projects, but not 

commonly used for large deployments and only fully 

supported for the Python programming language.

TensorFlow (www.tensorflow.org) by Google 

(Mountain View, CA, USA; https://about.google/) has a 

large userbase supported with good documentation. 

It offers scalable production and deployment and 

supports mobile deployment. It has a higher learning 

curve compared to PyTorch, however.

Caffe2 (https://caffe2.ai/) by Facebook, a lightweight 

option, translates to efficient deployment. One of 

the oldest frameworks, Caffe2 has widely supported 

libraries for convolutional neural networks and 

computer vision applications and is best suited for 

mobile devices using OpenCV.

The optimal framework for a task ultimately depends 

on complexity and required inference speed. The more 

layers a neural network has, the slower the inference.

Step 3 - Preparing Training Data 
for the Neural Network 
The number of images required for training depends on 

the type of data a neural network will evaluate. Generally, 

every characteristic and every grade of that characteristic 

FIGURE 2: A deep learning system, once trained to recognize what a 
good image looks like (left), can identify objects with defects as bad 
images (right) and designate a failed inspection.
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the neural network must assess, requires a set of training 

images. The more images provided for each category, 

the more finely the neural network can learn to assess 

those categories.

For common use cases, free or purchasable pre-

labelled datasets that match specific requirements 

may exist online. Companies such as Cvedia 

(Arlington, VA, USA; www.cvedia.com) can create 

synthetic datasets annotated and optimized for 

neural network training. In the absence of other 

options, self-produced and -labeled images may need 

creating. Turning a single image into many images 

through rotating, resizing, stretching, and brightening 

or darkening can save time.

Several developers in the deep learning market 

open source their image labeling solutions and share 

them for free. LabelImg (bit.ly/VSD-LBMG), particularly 

useful for unlabeled datasets, provides a graphical 

image annotation tool that helps label objects into 

bounding boxes within images. Alternatively, third 

parties can handle the labeling process. Preparing 

training data can become even more important in 

light of specific hardware limitations or preferences, 

as some deep learning tools support only a finite set 

of hardware.

Step 4 - Train and Validate the Neural 
Network to Ensure Accuracy 
This stage involves configuring and running the scripts on 

a computer until the training process delivers acceptable 

levels of accuracy for a specific use case. Separating 

training and test data ensures a neural network does 

not accidentally train on data used later for evaluation. 

Taking advantage of transfer learning or utilizing a pre-

trained network and repurposing it for another task, 

can accelerate this process. A neural network already 

trained for feature extraction, for example, may only 

need a fresh set of images to identify a new feature. 

Frameworks like Caffe2 and TensorFlow provide pre-

trained networks for free.

In the absence of coding expertise for neural 

network training, several graphical user interface-

based software options exist, like Matrox Imaging 

Library X, or MIL (bit.ly/VSD_MILX) from Matrox 

Imaging (Dorval, QC, Canada; www.matrox.com) 

which work with different frameworks and make the 

training and deployment process very intuitive, even 

for less experienced users.

Step 5 - Deploy the Neural Network 
and RunI Inference on New Data
The last step entails deployment of a trained neural 

network on the selected hardware to test performance 

and collect data in the field. The first few phases of 

inference, ideally used in the field to collect additional 

test data, may provide training data for future iterations.

Cloud deployment offers significant savings on 

hardware cost and the ability to scale up quickly and 

deploy and propagate changes in several locations. 

Internet connection issues can cause critical failures, 

however, and cloud deployment has high latency 

compared to edge deployment.

Edge deployment on a highly customizable PC 

suits high performance applications. Selected PC 

components may fit a specific application, which 

makes pricing flexible. Edge deployment still has a 

higher cost than other options and the footprint of the 

needed hardware requires consideration.

Edge deployment on ARM, FPGA, or inference 

cameras like the Firefly DL camera from FLIR Machine 

Vision (Arlington, VA, USA; www.flir.com) requires 

less power than other options, offers savings in 

peripheral hardware, and has high reliability. This 

creates a secure system isolated from other hardware, 

or an ideal compact application, but may not handle 

computationally demanding tasks effectively
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Potential Shortcomings of Deep Learning 
Deep learning, a black box for the most part, can make 

explaining how a neural network arrives at its decisions 

difficult to illustrate. While inconsequential for some 

applications, companies in the medical, health, and life 

sciences field have strict documentation requirements 

for the product approval by the FDA or its counterparts 

in other regions. Full awareness of how deep learning 

software functions and potential requirements to 

document the entire operation in fine detail are 

necessary in some cases.

Optimizing a neural network in a predictable 

manner may present an issue. Many neural networks 

take advantage of transfer learning to retrain existing 

networks, while very little optimization occurs.

Even minor errors in labeling training data can throw 

off the accuracy of the neural network. Debugging the 

problem becomes extremely tedious, if review of all 

training data individually to find the incorrect label 

becomes necessary.

In addition to these shortcomings, logic-based 

solutions better suit some applications. For instance, 

logic-based solutions may provide better results for a 

well defined, deterministic, and predictable problem 

compared to deep learning-based solutions. Typical 

examples include barcode reading, part alignment, and 

precise measurements.

Conclusion
Even with some of the shortcomings, for certain 

applications the potential benefits accrued from deep 

learning like rapid development, ability to solve complex 

problems, and ease of use and deployment, outweigh 

the negatives. Deep learning also continually improves to 

account for these shortcomings.

Also, with wider adoption many companies now 

develop their own neural networks instead of relying 

on transfer learning which improves performance and 

customizes the solution for a specific problem.

Even in applications well-suited for logic-based 

programming, deep learning can assist the underlying 

logic to increase overall accuracy of the system. As a 

parting note, it’s getting easier and cheaper than ever 

before to get started on developing a deep learning 

system (bit.ly/VSD-DLCS).

Brian Cha is a technical product manager at FLIR Systems, Inc. 
(Arlington, VA, USA)
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Designing effective traditional and deep 
learning based inspection systems
When best practices are followed, machine 
vision and deep learning-based imaging 
systems are capable of effective visual 
inspection and will improve efficiency, 
increase throughput, and drive revenue.

DAVID L. DECHOW and ANDREW NG

For decades, machine vision technology has 

performed automated inspection tasks—including 

defect detection, flaw analysis, assembly 

verification, sorting, and counting—in industrial 

settings. Recent computer vision software advances 

and processing techniques have further enhanced 

the capabilities of these imaging systems in new and 

expanding uses. The imaging system itself remains a 

critically important vision component, yet its role and 

execution can be underestimated or misunderstood.

Without a well-designed and properly installed 

imaging system, software will struggle to reliably 

detect defects. For example, even though the imaging 

setup in Figure 1 (left) displays an attractive image of a 

gear, only the image on the right clearly shows a dent. 

When best practices are followed, machine vision and 

deep learning-based imaging systems are capable of 

effective visual inspection and will improve efficiency, 

increase throughput, and drive revenue. This article 

takes an in-depth dive into the best practices for 

iterative design and provides a roadmap for success for 

designing each type of system.

Is Your Imaging System Good Enough?
Lighting, optics, and cameras comprise an imaging 

system, and these components must be carefully 

specified and implemented to ensure high-quality parts 

images. “High quality,” in this context, means images 

with sufficient contrast to highlight unacceptable 

features (such as dents) compared with those with 

a normal or expected appearance. The images must 

also have adequate resolution to show differences 

between features.

If a human inspector examining an image produced 

by an inspection system cannot confidently identify a 

Figure 1: While the image on the left shows a flawless gear, the image on the right clearly shows a defect. (Photos courtesy of Landing AI.)
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defect, it’s unlikely the software will be able to either. 

Conversely, in circumstances where a human inspector 

can identify a defect in an image, there’s no guarantee 

that an imaging technique will produce reliable and 

repeatable detection of similar target defects during 

operation. Situations that indicate an imaging system 

(and not the software) needs work include:

•	 An inspector looking at a physical part can reliably 

judge that something is defective but can’t be sure 

when looking only at the image captured.

•	 Two inspectors looking at a physical part generally 

agree in their assessment, but an inspector looking at 

the physical part often disagrees with a different in-

spector looking only at the image.

One common misconception is that if a human 

inspector can see a feature with the naked eye, an 

imaging system can be designed to produce an image 

that successfully captures the same feature. But, 

a human inspector can view a part from multiple 

orientations and under different lighting conditions to 

make a quality judgment, while a static imaging system 

cannot necessarily capture a similarly large range of 

orientations and illumination variations. Therefore, it 

might have trouble highlighting features that a human 

inspector holding the same object would highlight. 

And, in cases such as detecting scratches in transparent 

parts, the imaging system’s challenges might become 

even more complex.

Over millennia, the human visual system has 

evolved to be very efficient and accurate at processing 

image data. Building a software system capable of 

beating a person at processing images is an incredibly 

difficult task, as is building a software system that 

can detect defects that an inspector cannot. Even the 

most advanced vision system is not magic. If given a 

sufficiently blurry and fuzzy image, no vision system 

can reliably make a defect judgment.

Traditional Imaging System Design Checklist
Systems integrators and OEMs must consider several 

factors when designing an effective imaging system. 

These factors include:

Contrast: Creative use of dedicated illumination and 

optics specifically selected for an application and the 

types of features that produce contrast represent an 

important element in machine vision.

Spatial resolution: Spatial resolution in an imaging 

system refers to the number of pixels that span a 

feature, such as a defect. With too few pixels, it is 

impossible to reliably detect the feature relative to the 

Figure 2: The image on the left illustrates a challenging detection problem as compared with the image in the middle, while the image on the 
right shows the defect even more clearly.
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part surface. Assuming that an image is well focused, 

we recommend having at least a 5-pixel width of the 

smallest defect the system is expected to detect.

Image consistency: In an automated process, many 

factors can cause variation in an image, including 

part positional variation and variation in the parts 

themselves. In some scenarios, these variations can 

cause glare or dropout from the illumination source 

that obscures features. In other cases, part variation 

might cause reflections that could be mistaken for 

flaws or defects. If a machine vision system inspects 

a transparent automotive headlight for defects, for 

example, different lighting conditions will produce 

different amounts of glare. The more the system can 

capture images from the same angle, with the same 

lighting and the same background, the easier it is to 

build software to detect defects.

Exposure: Over or underexposed images lose a lot of 

fine detail. The appropriate level of exposure should 

allow the system to capture clear images of defects.

The Iterative Process of Designing 
an Imaging System
Specifying an imaging architecture for a machine vision 

system is just one critical step in the overall integration 

process. Successful automation vision system integration 

requires thorough and competent analysis and planning 

prior to component design and specification, followed by 

efficient installation, configuration, and system start-up.

Software must be considered during imaging 

system design as well. In some cases, an image that 

will be used with traditional rules-based machine 

vision algorithms might be different from an image 

that would be appropriate for a system using deep 

learning algorithms. Figure 2 (left) shows a significantly 

more challenging detection problem than the better 

illuminated and lit image in Figure 2 (middle). The 

darker backdrop in Figure 2 (right) illuminates the 

defect even more. In this case, better image design 

would make implementation of either inspection 

system significantly more reliable.

Designing an imaging system is a highly iterative 

process; the best machine vision solutions evolve and 

grow more reliable and stronger over time. Designing 

a system around the “perfect” lighting and camera 

and then building it in advance may not be possible. 

But with thorough analysis of an application’s needs —

along with some knowledge of imaging components 

and techniques—developers can produce a good 

initial design.

When developing software systems, an integrator 

or OEM should collect sample images—even with a 

smartphone camera in the first few days—to get initial 

data to validate the feasibility of the software. Whether 

this proof of concept produces positive or negative 

results, bear in mind that a separate, production-

ready imaging system must be designed. A smartphone 

camera’s capabilities, such as quickly moving to 

multiple angles, might not be feasible in a production 

system. Working with sample parts with representative 

defects using a static imaging setup may work, but 

the final imaging system configuration must still 

be considered.

Testing software with “perfect” images might not 

truly represent actual capability in the production 

setting. When designing a production-ready imaging 

system, a thoughtful design will produce longer-term 

success. In a typical process, one should:

•	 Develop a specification for the types of features/

objects/defects to be imaged, considering the au-

tomation and handling limitations of the part. 

Considerations might involve fast-moving parts, 

parts that change in appearance based on viewing 

orientation, and parts that show glare.

•	 Collect defective and acceptable part samples.

•	 Design an initial imaging system that meets the 
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needs of the parts to be detected and the physi-

cal constraints and specifications of the production 

environment.

•	 Run the sample of parts through the system and 

check that all defects are imaged clearly in a way that 

will be suitable for the targeted software solutions.

•	 Iterate steps 3 and 4 until performance is satisfactory.

Similar steps must be made when developing a deep 

learning-based imaging system or implementing deep 

learning capabilities into an existing machine vision 

system, with the exception of some key considerations. 

The next section provides a plan for getting started 

with deep learning in your imaging system.

Deep Learning Development Checklist
In several scenarios, discrete analysis-based 

machine vision algorithms may not suffice. These 

include semiconductor and electronics inspection, 

steel inspection, welding inspection, and any other 

inspection task where defects may be hard to find 

or where the appearance of “good” parts or items 

varies. Developing a deep learning software solution 

may be similar to building a traditional rules-based 

system, with the exception of some key considerations. 

These include:

Deploying clean data: “Garbage in, garbage out” is 

the saying. Data represent the food that nourishes an 

artificial intelligence (AI) system, so it is imperative 

that quality data are used to train a deep learning 

model. Even the most well-conceived model 

produces subpar results when consuming inaccurate 

or incomplete information. A quality deep learning 

software solution should continuously collect data 

while allowing the data and each software component 

to be systematically developed, deployed, tracked, 

maintained, and monitored with tools that help 

developers access and control AI model evolution. 

The data should include information on products, 

defects, labels or tags, data consistency, and 

associated models.

Defining defects: In many industrial settings, 

companies that rely on human inspectors often keep 

a written log of defined part defects. In training a 

deep learning system, these defects must also be 

defined up front so that the software can recognize a 

defective part.

Tagging and labeling: Companies looking to deploy 

deep learning must accurately label and tag data. When 

done inconsistently, this step can lead to inaccurate 

AI models. With clear defect definitions and clear, 

unambiguous labels on a representative data set, 

companies can proceed with visual projects with small 

amounts of data. Internal experts must collaborate 

to assign, manage, execute, and review tasks to 

ensure quick and accurate labeling to produce more 

accurate models.

Iterative improvement: The best AI models should be 

evaluated against expert human inspectors to prove 

value before deploying to a production line, especially 

if the line serves as a test for global deployments. Deep 

learning software should have tools for evaluating a 

model’s performance, identifying data that can result 

in losses in model accuracy, and evaluating new data 

sets to improve and expand existing models to reach 

success metrics. The software should also feature tools 

to prevent overfitting and to evaluate the performance 

of a trained model.

Common Pitfalls and Challenges
Imaging presents many challenges, so systems 

integrators and OEMs should consider a few of the most 

fundamental and elementary pitfalls and address these 

up front in system design. These include:

Ambient light: Illumination from sources other than 

the dedicated lighting components designed for 

an imaging system is considered ambient and can 
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introduce inconsistency and failure into the system. 

Sunlight and even overhead illumination must be 

controlled either through shielding or optical filtering 

where possible. In one example, a change in color of 

the uniforms of manufacturing personnel near the 

inspection system caused additional reflected light 

that impacted inspection results. In most cases, it is 

relatively simple to mitigate ambient light in imaging 

system design.

Mechanical stability: Factory vibration can shake the 

optics in imaging systems loose, and changes in camera 

position, lighting components, or even lens settings 

can cause unreliable imaging.

Varying appearances: Materials, design, and overall 

appearance of the parts being inspected may change, 

and without the vision system owner being aware 

of them. For example, a manufacturing engineering 

team decides to change the metal alloy on a screw 

because it’s cheaper. Functionally, the part will work 

the same, but the appearance may be altered. Such 

external influences can cause a system’s performance 

to degrade, sometimes silently. Software that checks 

for this drift can signal to the operations team when to 

carry out vision system maintenance in a timely way.

Machine Vision and Deep Learning Evolved
A visual inspection system, whether traditional or deep 

learning-based, can help industries and companies of 

all types keep up with customer demand while ensuring 

product quality, improving productivity, and bringing 

down costs. Whether you are a company looking to 

automate more processes or an integrator or OEM 

facing the specification, design, and installation of your 

next system, consider the fact that all visual inspection 

systems require testing, iteration, and continuous 

improvement.

Following best practices and considering contrast, 

spatial resolution, image consistency, and exposure 

will aid in the design of an effective imaging system. On 

the deep learning side, factoring in the need for clean 

data, agreement-based labeling, tagging and labeling, 

and iterative model improvement will help produce a 

high-quality AI visual inspection system. With ongoing 

improvement, your visual inspection system will 

continue to add value and allow your business to grow 

into the future.
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