
VISION INSIGHTS

03 �What is deep learning
and how do I deploy
it in imaging?

08 �Five steps for building
and deploying a deep
learning neural network

12 �Designing effective
traditional and
deep learning based
inspection systems

How to Deploy Deep
Learning in Machine
Vision Applications

PH
OT

O
 1

37
79

52
56

 ©
 T

HE
KA

IK
O

RO
 | D

RE
AM

ST
IM

E.
CO

M

COPYRIGHT © 2024 BY ENDEAVOR BUSINESS MEDIA. ALL RIGHTS RESERVED.

WWW.VISION-SYSTEMS.COM | 2

VISION SYSTEMS DESIGN: VISION INSIGHTS

How to Deploy Deep Learning
in Machine Vision Applications

In this edition of Vision Insights, Vision Systems Design offers
practical advice on building and deploying deep learning in
machine vision systems.
To do so, we discuss what neural networks are and how they

work, how to set up and train neural networks, and how to deploy
them to automate product inspection.

Whether you work at an OEM, system integrator or end-user
organization, we’ve provided insights here to help fuel your
next project.

				 Linda Wilson,
EDITOR IN CHIEF

VISION SYSTEMS DESIGN

FACEBOOK
VISIONSYSTEMSDESIGN

FOLLOW US

LINKEDIN
VISION SYSTEMS DESIGNX@VISION_SYSTEMS

https://www.facebook.com/VisionSystemsDesign/
https://www.linkedin.com/groups/1917974/
https://twitter.com/Vision_Systems

WWW.VISION-SYSTEMS.COM | 3

VISION SYSTEMS DESIGN: VISION INSIGHTS

What is deep learning and how
do I deploy it in imaging?
A subset of machine learning, deep learning
offers promising enhancements in accuracy
and efficiency in machine vision.

PERRY WEST

What is deep learning? Within the area of

artificial intelligence (AI) exists machine

learning, and within that, is the area of deep

learning. Many different types of artificial intelligence

exist. AI is any technique that imitates, at least in part,

what a human would do with their mind. It is the

ability of machines to mimic human behavior, and

usually integrates perception, prediction, reasoning,

and decision making, according to Yann LeCun, vice

president and chief AI scientist at Facebook.

Deep learning (Figure 1) can be thought of as

“programming with data.” In a virtual machine setup

with a neural network, the network is initially not

programmed to do anything. When this virtual machine

is given images, it begins to program itself to perform

whatever the task is that is being set up. Deep learning

can be used in imaging in many ways, including the

recognition of objects in images, flaw detection, sorting

and grading products, facial recognition, self-driving

cars, and denoising images, among others.

Neural networks are modeled after the human

brain. The brain consists of around 100 billion brain

cells—neurons. Each neuron has dendrites (inputs),

a nucleus, and axons (outputs). The connection

between an axon of one neuron and a dendrite of

another neuron is a synapse. The synapse contains

a small gap separating the axon and dendrite, and

when things are going right, there is dopamine in

the synapse that strengthens the electrochemical

connection the two neurons.

Something similar exists in a computer model of the

neuron (Figure 2), with the nucleus and the dendrites

(inputs) and the weights associated with each input,

which represents the synapses—how tightly coupled

the inputs are to preceding neurons. There are also

the axons (outputs from the neurons). One important

aspect of the computer simulation of a neuron is the

activation function, which introduces non-linearity

to neural networks. Activation functions include the

sigmoid, hyperbolic tangent, rectified linear unit

(ReLU), and leaky ReLU functions.

The simple neural network proposed many years ago

consists of three layers. The input layer did nothing

but distribute inputs and had no activation function or

weights. Then there was the hidden layer in the middle,

FIGURE 1: Deep learning exists within machine learning, which
exists within the larger category of artificial intelligence (AI),
which refers to techniques that imitate what humans would do
with their mind.

WWW.VISION-SYSTEMS.COM | 4

VISION SYSTEMS DESIGN: VISION INSIGHTS

and the output layer. This was the minimal neural

network architecture.

To use a neural network in deep learning, it must

be trained to minimize errors over the training set.

The training technique is backpropagation. When

using the network, input data (images or features)

advance through the neural network to reach the

outputs. Network training involves starting from the

output and propagating the error backwards through

network (backpropagation). Network training uses

the steepest gradient descent,

which means using the derivative

for the activation function and the

chain rule in Calculus to move the

errors back through the network

regardless of the number of layers.

One learning control parameter,

the learning rate, controls the

magnitude of the weight adjustment

based on the area and the steepness

of the gradient. Starting with a very-

high learning rate and trying to

make big jumps in learning typically

results in big weight changes

causing the network to diverge

from a solution and perform worse

instead of better. When using a high learning rate,

some learning takes place, but typically the network

doesn’t improve to the point of being useful. Setting

the learning rate low results in a long training period.

A learning rate that brings the error down as quickly

as possible is ideal, but ultimately, developers must

experiment and configure the system to find the best

learning rate.

In convolutional neural networks (CNN), an input

(image), first goes into layers performing convolution

with the convolution weights set through training. The

next layers use an activation function, usually followed

by a pooling layer, where groups of four pixels reduce

to one, thus reducing the overall size of the image and

making it easier for the network to extract features.

Pooling can be 2 x 2 to 1, it can be 3 x 3 to 1, and it can

be the maximum, the average, or the median, but the

most common pooling function involves getting one

pixel from the maximum of four pixels.

In the CNN, an image goes through a number of two-

dimensional convolutional layers and then is flattened

to create a one-dimensional feature vector from the

image. The feature vector runs through additional

network layers to create classification outputs (Figure

3). The next step involves non-maximum suppression,

an important post-processing step. If the neural

network says cat 0.8 and dog 0.3, and the application

only requires choosing between cat or dog, non-

maximum suppression helps determine that—based

on the difference in values—a cat is in the image. An

issue presents itself when the network says cat 0.51

and dog 0.49. Here, the non-maximum suppression

algorithm must be strong enough to render such values

as indeterminate.

FIGURE 2: In a computer model of a neuron, there exists a nucleus, dendrites (inputs), weight
associated with each input, and axons (outputs from the neurons).

WWW.VISION-SYSTEMS.COM | 5

VISION SYSTEMS DESIGN: VISION INSIGHTS

Deep Learning Techniques
and Implementation
Techniques for using deep learning in imaging include

supervised learning, the most common method, where

a system trains with labeled images and is then tested. If

the testing results are adequate, the deep learning-based

system is ready to use. Transfer learning methods involve

using supervised learning along with a pretrained neural

network. In this method, retraining is only required on

the later layers in the network for the new application.

When it is appropriate, transfer learning is much faster

than training a network from scratch.

Unsupervised learning, or predictive learning, defines

classes based on clustering of input data without

labeling. Reinforcement learning uses a reward—

positive or negative—for each output during training.

The learning rate is much slower than supervised

learning and requires much more data. Lastly,

adversarial training involves the use of two neural

networks working against each other.

The first step in implementing deep learning into an

imaging system involves determining the types and

numbers of layers, the number of inputs (usually the

number of pixels in the input images), and the number

of outputs (usually dependent on the number of

classes required). Inputs, images, outputs, and labels

for the images then go into a model under training.

Training compares the network’s outputs to the labels

to generate an error signal which feeds back into the

model under training to adjust the weights (coefficients),

a process repeated until the error over all the training

images reaches an acceptable minimum value.

When this happens, the network is tested using

images not used for training to verify the network’s

outputs have a sufficiently low error. After a successful

test, this neural network can be exported with the

trained weights and becomes the model to use. At

runtime, the model loads into an inference engine—a

computer running the neural network—where the

trained network operates.

Deep learning requires an abundance of labeled

training data. This data will be split up into three

classes: training data, test data, and validation data.

Training data is used exclusively for network training,

with each pass through the training data representing

an epoch. After each epoch, the network’s performance

is evaluated using the validation data and the error

on the validation data is tracked as an indication of

how well training is progressing. After training—with

the error on the training data sufficiently low—

the network is tested using the test data to ensure

acceptable results. Having a separate test set on

which the network doesn’t train enables developers to

independently test a trained network—providing the

only evidence that a network performs reasonably well.

Several methods for speeding up training exist,

such as initially training with a subset of the training

data. Such a method helps get adequate weights.

Another option, transfer learning, involves taking

a CNN previously trained on a similar problem and

only training the last few layers of the network for the

new application. With a similar enough network, the

features extract the same, removing the need to train

the convolutional layers—it is only necessary to train

the last few layers from the feature vector to output.

Fine tuning—another method similar to transfer

learning to speed up training—involves using a new,

small set of training images with a trained network. To

use fine tuning, the output layer of the CNN must be

replaced, with training performed with a small training

data set. Pre-trained networks for transfer learning and

fine tuning exist, including VGG-16, ResNet 50, DeepNet,

and AlexNet by ImageNet.

Several considerations must be made when

implementing a deep learning system, including the

fact that a fast system requires parallel processing.

WWW.VISION-SYSTEMS.COM | 6

VISION SYSTEMS DESIGN: VISION INSIGHTS

A CPU can perform initial tests but will be very slow

in training and execution. Useful tools for parallel

processing include graphics processing units (GPU),

field-programmable gate arrays (FPGA), and digital

signal processors (DSP). Chips such as the Apple A12

bionic chip, which has two CPUs and a GPU, plus some

additional circuitry specially designed to execute deep

learning networks, as well as special processing chips

like the Intel Movidius and Intel Nervana, also provide

processing capabilities.

Data must also be considered, including data for

training, validation and testing. More training data

means better results. Implementing a successful deep

learning system necessitates a lot of time and effort

spent on gathering and labeling data.

Major Challenges and Pitfalls to Avoid
One of the major challenges in deep learning involves

real-time processing of many pixels, which means a lot of

data, which requires a lot of computational power in both

training and execution. This necessitates a very large

set of pre-labeled, training images, but in some cases,

labeled training datasets can be purchased. Another

problem exists with the possibility of mislabeling of

training data. Labeling just one image wrong results in

degradation in performance of a trained neural network.

Bias in the training data represents another possible

pitfall. More samples of one class than the other leads

to difficulty in achieving good results on the classes

with fewer examples. Data storage is another factor,

including the image format and image storage options.

When storing images on disks, it takes a long time for

retrieval. Solid-state disks become preferable, but if

there are a million RGB, megapixel

images, storage requirements

become enormous.

In using machine learning without

deep learning, network inputs won’t

be the images, but features extracted

from the images. Selected features

must be normalized in such scenarios.

With one feature going from 0 to 1 and

another feature that goes from 0 to

100, the latter dominates. Normalizing

scales the features, ensuring that

they all fall within the same range.

Otherwise, the network will fail to

meet performance expectations.

Data augmentation—a method for reducing the cost

of gathering and labeling the data—improves network

reliability. Augmenting a picture of a cat by creating

several other pictures from it with the same label

represents one example. Further methods include

rotation, scale, shear, obscuration (e.g. haze), color

change, flip/mirror, crop, addition of noise, and varying

the background scene.

Choosing the right network configuration poses

potential problems. If a network is too complex,

training time will be longer than necessary and the

network may not generalize the features that it needs

to recognize and may perform poorly.

FIGURE 3: In CNNs, convolutional layers are used to perform feature extraction, just as
convolution operators are used to find features such as edges. In conventional image pro-
cessing, image filters such as Gaussian blurring and median filtering perform this task. CNN
architectures, on the other hand, emulate the human visual system (HVS) where the retinal
output performs feature extraction such as edge detection. (Figure courtesy of MIT).

WWW.VISION-SYSTEMS.COM | 7

VISION SYSTEMS DESIGN: VISION INSIGHTS

One option to deal with long training time is renting

cloud processing time from Microsoft or Amazon for

deploying deep learning applications, as the cloud

pulls in many processors and GPUs to get training done

more quickly. Determining the initial conditions of the

network also creates a challenge, as does the selection

of the learning rate and training parameters.

Pragmatic challenges in deep learning exist as well,

including the input of an image during execution that is

not representative of any training input (an anomaly).

Security must also be considered, in terms of what

would happen when a network fails to give the right

answer or if someone hacks into the network.

Philosophical challenges must be considered as

well. CNNs lack creativity or abstract thinking, have no

intuition, and cannot synthesize input from a specified

output, unlike people. For example, it is not possible to

tell a network “I want to recognize a cat, what do I look

for?” Other questions to consider are: If the network fails,

who is responsible, and will they be able to explain why?

Supervised learning and reinforcement learning are not

sufficient for real world problems. Unsupervised learning

is required, where the network can not only recognize

the cat and the dog, but also look at a picture of a

camel and determine that it is not a cat and not a dog.

Several methods for improving efficiency in deep

learning exist, including experimentation with floating

point weights and subsequent reduction to integer

(fixed point) weights, which leads to speed increases

but a slight decrease in accuracy. Using binary weights

(0 or 1) also leads to a further increase in speed, but a

decrease in accuracy.

In a network with lots of branches with weights,

some of these weights become infinitesimally small.

Pruning these weights out is possible, with only a small

decrease in accuracy. Transfer learning can also lead to

a significant reduction in training time.

Tips for Successful Implementation
Regarding the successful implementation of a deep

learning system, here are several tips to consider. First,

watch out for overfitting, which happens when a neural

network essentially “memorizes” the training data.

Overfitting results in great performance on training

data, but the network’s model becomes useless for

out-of-sample prediction. Larger networks are more

powerful, but it becomes easier to overfit. A system

trying to learn a million parameters from 10,000

examples is not ideal. If parameters are greater than

examples, this leads to trouble. More data is almost

always better because it helps fight overfitting.

Validation—and one should never train on the

validation or test data—really helps when the network

isn’t behaving right, and validation doesn’t track the

testing results. When this happens, stop and make

changes to the network rather than continuing with

disappointing results.

Furthermore, train over multiple epochs. With

learning rates of 1/10th or 1/20th, many passes are

required to get the gradient down to the minimum or

near the minimum. Lastly, stacking layers can help

as well. The first layer can be a convolutional layer or

multiple convolutional layers doing different things.

When approached with great attention to detail

and an understanding of deep learning architectures,

functionality, and system requirements, the technology

offers great enhancements in efficiency and accuracy

in machine vision processes of all kinds. Additionally,

breakthroughs should coming in network topology,

in ways to speed up training, in ways to reduce the

number of labeled images needed to train, and even in

new types of networks for learning.

Perry West is the founder and president of Automated Vision
Systems, Inc. (San Jose, CA, USA).

WWW.VISION-SYSTEMS.COM | 8

VISION SYSTEMS DESIGN: VISION INSIGHTS

Five steps for building and deploying
a deep learning neural network
Accelerating machine vision implementation
with deep learning is nothing to fear.

BRIAN CHA

Free tools and training data, easy-to-find tutorials,

and low hardware costs have made deep

learning no longer a method available only to

researchers or people with highly specialized skills

and/or big budgets.

This presents both opportunities and threats as new

players emerge to disrupt established names and spur

innovation. It also provides opportunities for a machine

vision system to do things previously unimaginable.

Deep learning can recognize unexpected anomalies,

typically very difficult or

almost impossible to achieve

with traditional rules-based

coding, for example.

Deep Learning
Fundamentals
Deep learning, a subset of

machine learning inspired by

how the human brain works,

takes place in two stages:

training and inference.

The training phase involves defining the number

of neurons and layers that will comprise the neural

network and exposing the network to labeled training

data, usually good images of objects that would pass

inspection and bad images of objects that would fail.

The neural network then figures out properties of

each grade, such as size, shape, color, consistency

of color, and so on. Manual definition of these

characteristics or programming the parameters of

a good or bad product are not required. The neural

network trains itself.

In the inference phase the trained neural network,

when presented with fresh images, will provide an

inference as to the quality of the object and the neural

network’s confidence in its assessment.

Step 1 - Identify The Appropriate
Deep Learning Function
Four of the most common deep learning tasks include

classification, detection and localization, segmentation,

and anomaly detection.

Classification involves sorting images into different

classes and then grouping images based on common

properties, most often into categories of pass and fail.

Any item classified pass continues down the production

line. An item classified fail does not.

Detection and localization can identify features in an

image and draw a bounding box around those features

FIGURE 1: Advanced driver assistance systems are appropriate for deep learning segmentation rou-
tines that locate and identify objects, for instance pedestrians and other vehicles.

WWW.VISION-SYSTEMS.COM | 9

VISION SYSTEMS DESIGN: VISION INSIGHTS

to determine their position and size. This function can

provide a more detailed assessment of why an item

deserves a fail classification, for example, by detailing

the location of the fault.

Segmentation identifies which pixels in an image

belong to which corresponding objects, to determine

the context of an object and its relationship to other

objects. Advanced driver assistance systems (ADAS)

use segmentation routines to identify cars, street signs,

or other objects while the car moves.

Anomaly detection functions can identify regions on

an image that do not match a pattern. For instance, a

deep learning system could process an empty shelf in

a grocery store as an anomaly compared to nearby, full

shelves, and mark the empty shelf as requiring a restock.

Step 2 - Select a Framework
A framework, or a toolset used to develop a neural

network, usually includes a starter neural network and

tools for training and testing the network. Free, easy to

use frameworks like PyTorch, TensorFlow, and Caffe2

provide great documentation and include examples to

allow novice users to train and deploy neural networks

with minimum effort.

PyTorch (https://pytorch.org/), an open source

solution now part of Facebook (Menlo Park, CA,

USA; www.facebook.com), is simple and easy to use

and employed in many research projects, but not

commonly used for large deployments and only fully

supported for the Python programming language.

TensorFlow (www.tensorflow.org) by Google

(Mountain View, CA, USA; https://about.google/) has a

large userbase supported with good documentation.

It offers scalable production and deployment and

supports mobile deployment. It has a higher learning

curve compared to PyTorch, however.

Caffe2 (https://caffe2.ai/) by Facebook, a lightweight

option, translates to efficient deployment. One of

the oldest frameworks, Caffe2 has widely supported

libraries for convolutional neural networks and

computer vision applications and is best suited for

mobile devices using OpenCV.

The optimal framework for a task ultimately depends

on complexity and required inference speed. The more

layers a neural network has, the slower the inference.

Step 3 - Preparing Training Data
for the Neural Network
The number of images required for training depends on

the type of data a neural network will evaluate. Generally,

every characteristic and every grade of that characteristic

FIGURE 2: A deep learning system, once trained to recognize what a
good image looks like (left), can identify objects with defects as bad
images (right) and designate a failed inspection.

WWW.VISION-SYSTEMS.COM | 10

VISION SYSTEMS DESIGN: VISION INSIGHTS

the neural network must assess, requires a set of training

images. The more images provided for each category,

the more finely the neural network can learn to assess

those categories.

For common use cases, free or purchasable pre-

labelled datasets that match specific requirements

may exist online. Companies such as Cvedia

(Arlington, VA, USA; www.cvedia.com) can create

synthetic datasets annotated and optimized for

neural network training. In the absence of other

options, self-produced and -labeled images may need

creating. Turning a single image into many images

through rotating, resizing, stretching, and brightening

or darkening can save time.

Several developers in the deep learning market

open source their image labeling solutions and share

them for free. LabelImg (bit.ly/VSD-LBMG), particularly

useful for unlabeled datasets, provides a graphical

image annotation tool that helps label objects into

bounding boxes within images. Alternatively, third

parties can handle the labeling process. Preparing

training data can become even more important in

light of specific hardware limitations or preferences,

as some deep learning tools support only a finite set

of hardware.

Step 4 - Train and Validate the Neural
Network to Ensure Accuracy
This stage involves configuring and running the scripts on

a computer until the training process delivers acceptable

levels of accuracy for a specific use case. Separating

training and test data ensures a neural network does

not accidentally train on data used later for evaluation.

Taking advantage of transfer learning or utilizing a pre-

trained network and repurposing it for another task,

can accelerate this process. A neural network already

trained for feature extraction, for example, may only

need a fresh set of images to identify a new feature.

Frameworks like Caffe2 and TensorFlow provide pre-

trained networks for free.

In the absence of coding expertise for neural

network training, several graphical user interface-

based software options exist, like Matrox Imaging

Library X, or MIL (bit.ly/VSD_MILX) from Matrox

Imaging (Dorval, QC, Canada; www.matrox.com)

which work with different frameworks and make the

training and deployment process very intuitive, even

for less experienced users.

Step 5 - Deploy the Neural Network
and RunI Inference on New Data
The last step entails deployment of a trained neural

network on the selected hardware to test performance

and collect data in the field. The first few phases of

inference, ideally used in the field to collect additional

test data, may provide training data for future iterations.

Cloud deployment offers significant savings on

hardware cost and the ability to scale up quickly and

deploy and propagate changes in several locations.

Internet connection issues can cause critical failures,

however, and cloud deployment has high latency

compared to edge deployment.

Edge deployment on a highly customizable PC

suits high performance applications. Selected PC

components may fit a specific application, which

makes pricing flexible. Edge deployment still has a

higher cost than other options and the footprint of the

needed hardware requires consideration.

Edge deployment on ARM, FPGA, or inference

cameras like the Firefly DL camera from FLIR Machine

Vision (Arlington, VA, USA; www.flir.com) requires

less power than other options, offers savings in

peripheral hardware, and has high reliability. This

creates a secure system isolated from other hardware,

or an ideal compact application, but may not handle

computationally demanding tasks effectively

WWW.VISION-SYSTEMS.COM | 11

VISION SYSTEMS DESIGN: VISION INSIGHTS

Potential Shortcomings of Deep Learning
Deep learning, a black box for the most part, can make

explaining how a neural network arrives at its decisions

difficult to illustrate. While inconsequential for some

applications, companies in the medical, health, and life

sciences field have strict documentation requirements

for the product approval by the FDA or its counterparts

in other regions. Full awareness of how deep learning

software functions and potential requirements to

document the entire operation in fine detail are

necessary in some cases.

Optimizing a neural network in a predictable

manner may present an issue. Many neural networks

take advantage of transfer learning to retrain existing

networks, while very little optimization occurs.

Even minor errors in labeling training data can throw

off the accuracy of the neural network. Debugging the

problem becomes extremely tedious, if review of all

training data individually to find the incorrect label

becomes necessary.

In addition to these shortcomings, logic-based

solutions better suit some applications. For instance,

logic-based solutions may provide better results for a

well defined, deterministic, and predictable problem

compared to deep learning-based solutions. Typical

examples include barcode reading, part alignment, and

precise measurements.

Conclusion
Even with some of the shortcomings, for certain

applications the potential benefits accrued from deep

learning like rapid development, ability to solve complex

problems, and ease of use and deployment, outweigh

the negatives. Deep learning also continually improves to

account for these shortcomings.

Also, with wider adoption many companies now

develop their own neural networks instead of relying

on transfer learning which improves performance and

customizes the solution for a specific problem.

Even in applications well-suited for logic-based

programming, deep learning can assist the underlying

logic to increase overall accuracy of the system. As a

parting note, it’s getting easier and cheaper than ever

before to get started on developing a deep learning

system (bit.ly/VSD-DLCS).

Brian Cha is a technical product manager at FLIR Systems, Inc.
(Arlington, VA, USA)

WWW.VISION-SYSTEMS.COM | 12

VISION SYSTEMS DESIGN: VISION INSIGHTS

Designing effective traditional and deep
learning based inspection systems
When best practices are followed, machine
vision and deep learning-based imaging
systems are capable of effective visual
inspection and will improve efficiency,
increase throughput, and drive revenue.

DAVID L. DECHOW and ANDREW NG

For decades, machine vision technology has

performed automated inspection tasks—including

defect detection, flaw analysis, assembly

verification, sorting, and counting—in industrial

settings. Recent computer vision software advances

and processing techniques have further enhanced

the capabilities of these imaging systems in new and

expanding uses. The imaging system itself remains a

critically important vision component, yet its role and

execution can be underestimated or misunderstood.

Without a well-designed and properly installed

imaging system, software will struggle to reliably

detect defects. For example, even though the imaging

setup in Figure 1 (left) displays an attractive image of a

gear, only the image on the right clearly shows a dent.

When best practices are followed, machine vision and

deep learning-based imaging systems are capable of

effective visual inspection and will improve efficiency,

increase throughput, and drive revenue. This article

takes an in-depth dive into the best practices for

iterative design and provides a roadmap for success for

designing each type of system.

Is Your Imaging System Good Enough?
Lighting, optics, and cameras comprise an imaging

system, and these components must be carefully

specified and implemented to ensure high-quality parts

images. “High quality,” in this context, means images

with sufficient contrast to highlight unacceptable

features (such as dents) compared with those with

a normal or expected appearance. The images must

also have adequate resolution to show differences

between features.

If a human inspector examining an image produced

by an inspection system cannot confidently identify a

Figure 1: While the image on the left shows a flawless gear, the image on the right clearly shows a defect. (Photos courtesy of Landing AI.)

WWW.VISION-SYSTEMS.COM | 13

VISION SYSTEMS DESIGN: VISION INSIGHTS

defect, it’s unlikely the software will be able to either.

Conversely, in circumstances where a human inspector

can identify a defect in an image, there’s no guarantee

that an imaging technique will produce reliable and

repeatable detection of similar target defects during

operation. Situations that indicate an imaging system

(and not the software) needs work include:

•	 An inspector looking at a physical part can reliably

judge that something is defective but can’t be sure

when looking only at the image captured.

•	 Two inspectors looking at a physical part generally

agree in their assessment, but an inspector looking at

the physical part often disagrees with a different in-

spector looking only at the image.

One common misconception is that if a human

inspector can see a feature with the naked eye, an

imaging system can be designed to produce an image

that successfully captures the same feature. But,

a human inspector can view a part from multiple

orientations and under different lighting conditions to

make a quality judgment, while a static imaging system

cannot necessarily capture a similarly large range of

orientations and illumination variations. Therefore, it

might have trouble highlighting features that a human

inspector holding the same object would highlight.

And, in cases such as detecting scratches in transparent

parts, the imaging system’s challenges might become

even more complex.

Over millennia, the human visual system has

evolved to be very efficient and accurate at processing

image data. Building a software system capable of

beating a person at processing images is an incredibly

difficult task, as is building a software system that

can detect defects that an inspector cannot. Even the

most advanced vision system is not magic. If given a

sufficiently blurry and fuzzy image, no vision system

can reliably make a defect judgment.

Traditional Imaging System Design Checklist
Systems integrators and OEMs must consider several

factors when designing an effective imaging system.

These factors include:

Contrast: Creative use of dedicated illumination and

optics specifically selected for an application and the

types of features that produce contrast represent an

important element in machine vision.

Spatial resolution: Spatial resolution in an imaging

system refers to the number of pixels that span a

feature, such as a defect. With too few pixels, it is

impossible to reliably detect the feature relative to the

Figure 2: The image on the left illustrates a challenging detection problem as compared with the image in the middle, while the image on the
right shows the defect even more clearly.

WWW.VISION-SYSTEMS.COM | 14

VISION SYSTEMS DESIGN: VISION INSIGHTS

part surface. Assuming that an image is well focused,

we recommend having at least a 5-pixel width of the

smallest defect the system is expected to detect.

Image consistency: In an automated process, many

factors can cause variation in an image, including

part positional variation and variation in the parts

themselves. In some scenarios, these variations can

cause glare or dropout from the illumination source

that obscures features. In other cases, part variation

might cause reflections that could be mistaken for

flaws or defects. If a machine vision system inspects

a transparent automotive headlight for defects, for

example, different lighting conditions will produce

different amounts of glare. The more the system can

capture images from the same angle, with the same

lighting and the same background, the easier it is to

build software to detect defects.

Exposure: Over or underexposed images lose a lot of

fine detail. The appropriate level of exposure should

allow the system to capture clear images of defects.

The Iterative Process of Designing
an Imaging System
Specifying an imaging architecture for a machine vision

system is just one critical step in the overall integration

process. Successful automation vision system integration

requires thorough and competent analysis and planning

prior to component design and specification, followed by

efficient installation, configuration, and system start-up.

Software must be considered during imaging

system design as well. In some cases, an image that

will be used with traditional rules-based machine

vision algorithms might be different from an image

that would be appropriate for a system using deep

learning algorithms. Figure 2 (left) shows a significantly

more challenging detection problem than the better

illuminated and lit image in Figure 2 (middle). The

darker backdrop in Figure 2 (right) illuminates the

defect even more. In this case, better image design

would make implementation of either inspection

system significantly more reliable.

Designing an imaging system is a highly iterative

process; the best machine vision solutions evolve and

grow more reliable and stronger over time. Designing

a system around the “perfect” lighting and camera

and then building it in advance may not be possible.

But with thorough analysis of an application’s needs —

along with some knowledge of imaging components

and techniques—developers can produce a good

initial design.

When developing software systems, an integrator

or OEM should collect sample images—even with a

smartphone camera in the first few days—to get initial

data to validate the feasibility of the software. Whether

this proof of concept produces positive or negative

results, bear in mind that a separate, production-

ready imaging system must be designed. A smartphone

camera’s capabilities, such as quickly moving to

multiple angles, might not be feasible in a production

system. Working with sample parts with representative

defects using a static imaging setup may work, but

the final imaging system configuration must still

be considered.

Testing software with “perfect” images might not

truly represent actual capability in the production

setting. When designing a production-ready imaging

system, a thoughtful design will produce longer-term

success. In a typical process, one should:

•	 Develop a specification for the types of features/

objects/defects to be imaged, considering the au-

tomation and handling limitations of the part.

Considerations might involve fast-moving parts,

parts that change in appearance based on viewing

orientation, and parts that show glare.

•	 Collect defective and acceptable part samples.

•	 Design an initial imaging system that meets the

WWW.VISION-SYSTEMS.COM | 15

VISION SYSTEMS DESIGN: VISION INSIGHTS

needs of the parts to be detected and the physi-

cal constraints and specifications of the production

environment.

•	 Run the sample of parts through the system and

check that all defects are imaged clearly in a way that

will be suitable for the targeted software solutions.

•	 Iterate steps 3 and 4 until performance is satisfactory.

Similar steps must be made when developing a deep

learning-based imaging system or implementing deep

learning capabilities into an existing machine vision

system, with the exception of some key considerations.

The next section provides a plan for getting started

with deep learning in your imaging system.

Deep Learning Development Checklist
In several scenarios, discrete analysis-based

machine vision algorithms may not suffice. These

include semiconductor and electronics inspection,

steel inspection, welding inspection, and any other

inspection task where defects may be hard to find

or where the appearance of “good” parts or items

varies. Developing a deep learning software solution

may be similar to building a traditional rules-based

system, with the exception of some key considerations.

These include:

Deploying clean data: “Garbage in, garbage out” is

the saying. Data represent the food that nourishes an

artificial intelligence (AI) system, so it is imperative

that quality data are used to train a deep learning

model. Even the most well-conceived model

produces subpar results when consuming inaccurate

or incomplete information. A quality deep learning

software solution should continuously collect data

while allowing the data and each software component

to be systematically developed, deployed, tracked,

maintained, and monitored with tools that help

developers access and control AI model evolution.

The data should include information on products,

defects, labels or tags, data consistency, and

associated models.

Defining defects: In many industrial settings,

companies that rely on human inspectors often keep

a written log of defined part defects. In training a

deep learning system, these defects must also be

defined up front so that the software can recognize a

defective part.

Tagging and labeling: Companies looking to deploy

deep learning must accurately label and tag data. When

done inconsistently, this step can lead to inaccurate

AI models. With clear defect definitions and clear,

unambiguous labels on a representative data set,

companies can proceed with visual projects with small

amounts of data. Internal experts must collaborate

to assign, manage, execute, and review tasks to

ensure quick and accurate labeling to produce more

accurate models.

Iterative improvement: The best AI models should be

evaluated against expert human inspectors to prove

value before deploying to a production line, especially

if the line serves as a test for global deployments. Deep

learning software should have tools for evaluating a

model’s performance, identifying data that can result

in losses in model accuracy, and evaluating new data

sets to improve and expand existing models to reach

success metrics. The software should also feature tools

to prevent overfitting and to evaluate the performance

of a trained model.

Common Pitfalls and Challenges
Imaging presents many challenges, so systems

integrators and OEMs should consider a few of the most

fundamental and elementary pitfalls and address these

up front in system design. These include:

Ambient light: Illumination from sources other than

the dedicated lighting components designed for

an imaging system is considered ambient and can

WWW.VISION-SYSTEMS.COM | 16

VISION SYSTEMS DESIGN: VISION INSIGHTS

introduce inconsistency and failure into the system.

Sunlight and even overhead illumination must be

controlled either through shielding or optical filtering

where possible. In one example, a change in color of

the uniforms of manufacturing personnel near the

inspection system caused additional reflected light

that impacted inspection results. In most cases, it is

relatively simple to mitigate ambient light in imaging

system design.

Mechanical stability: Factory vibration can shake the

optics in imaging systems loose, and changes in camera

position, lighting components, or even lens settings

can cause unreliable imaging.

Varying appearances: Materials, design, and overall

appearance of the parts being inspected may change,

and without the vision system owner being aware

of them. For example, a manufacturing engineering

team decides to change the metal alloy on a screw

because it’s cheaper. Functionally, the part will work

the same, but the appearance may be altered. Such

external influences can cause a system’s performance

to degrade, sometimes silently. Software that checks

for this drift can signal to the operations team when to

carry out vision system maintenance in a timely way.

Machine Vision and Deep Learning Evolved
A visual inspection system, whether traditional or deep

learning-based, can help industries and companies of

all types keep up with customer demand while ensuring

product quality, improving productivity, and bringing

down costs. Whether you are a company looking to

automate more processes or an integrator or OEM

facing the specification, design, and installation of your

next system, consider the fact that all visual inspection

systems require testing, iteration, and continuous

improvement.

Following best practices and considering contrast,

spatial resolution, image consistency, and exposure

will aid in the design of an effective imaging system. On

the deep learning side, factoring in the need for clean

data, agreement-based labeling, tagging and labeling,

and iterative model improvement will help produce a

high-quality AI visual inspection system. With ongoing

improvement, your visual inspection system will

continue to add value and allow your business to grow

into the future.

David L. Dechow is owner of Machine Vision Source (Salisbury,
NC, USA) and Andrew Ng is the CEO and founder of Landing AI
(Palo Alto, CA, USA).

